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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2409
SUMMARY OF METHODS FOR CALCULATING DYNAMIC LATERAT
STABILITY AND RESPONSE AND FOR ESTIMATING
LATERAT. STABILITY DERIVATIVES

By John P. Campbell and Marion 0. McKinney
SUMMARY

A summary of methods for making dynamic lateral stability and
response calculations and for estimating the aerodynamic stability
derivatives required for use in these calculetions is presented. The
processes of performing calculations of the time histories of lateral
motions, of the period and damping of these motions, and of the latersl
stablility boundaries are presented as a series of simple straightforward
steps. Existing methods for estimeting the stebility derivetives are
summerized and, in some cases, simple new empirical formulas are pre-
sented. Reference is also made to reports presenting experimental data
that should be ugeful in meking estimates of the derivatives. Detailed
estimation methods are presented for low-subsonic-speed conditions but
only a brief discussion and a list of references are given for transonic-
and supersonic-speed conditions.

INTRODUCTION

Dynamic lateral stebllity has not received widespread attention in
the past because it has not generally been a serious problem in the
design of airplanes. Considerstion of dynamic lateral stability has
recently become more important, however, because current design trends
toward the use of low aspect ratio, sweepback, and higher wing loading
have, in many cases, led to unsatisfactory dynamlic lateral stability.

Airplene designers are therefore finding it necessary to make such calcu-~ -

lations in connection with the Hesign and modification of airplenes. In
many cases these calculations are difficult to perform for designers who
have had no previous experience in theoretical stability work because
most of the published theoretical analyses are not presented in a form
that is especially suited to the computation of dynamic stability. The
estimation of the stability derivatives required in dynemic stebility
calculations has also been found to be difficult in many cases. Although
theoretical and experimental data on these derivatives have appeared in
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numerous publications, no single publication has presented methods for
estimating the derivetives for all types of airplanes.

One approach to a presentation of methods of calculating stability
and estlmeting stability derivatives in a form suitable for use by
designers was made by Zimmerman in reference 1. Although this report
has proved to be of valuable assistance to designers in making dynamic
gtability calculations, recent trends in airplane design have caused its
usefulness to be sericusly limited. For example, the equations of refer-
ence 1 do not include the product-of-inertia terms which have been shown
by recent studies to be very important in some cases. (See references 2
and 3.) Moreover, the calculation of the time histories of lateral —
motions, one type of calculation that has been the subject of increasing
interest in the last few years (references &4 to T), 1s not covered in
reference 1. The methods of estimating stability derivatives presented
in reference 1 are also limited because they apply only to airplanes
having unswept wings with an aspect ratio of 6 operating at speeds at
which compressibility effects are negligible. The purpose of the present
paper is to extend the methods of reference 1 to include the methods of
computation which are of current interest to designers and to include
methods of estimating derivatives for configurations and flight conditions
which are now being considered.

This paper summarizes and reduces to simple straightforward steps
methods for computing the time histories of lateral motions, the period
and demping of these motions, and the lateral stabllity boundaries.
Existing methods of estimating stablility derivatives for a variety of
alrplane configurations are summarized and, in some cases, simple new
empirical formulas are presented. Reference is also made to reports
presenting experimental date that should be useful in making estimates
of these derivetives.

SYMBOLS

All forces and moments are referred to the stability system of axes
which i1s defined in figure 1. The following definitions apply to the
symbols except where they are otherwise defined:

m mass of airplane, slugs

5] wing area, squere feet

T wing mean chord, feet (b/A)

b wing span, feet {

¥4 span of that part of wing that has tip dihedral, feet



i

NACA TN 2409

Zg

&>

tail length (distance from center of pressure of vertical
taill to center of gravity, measured parallel to longi-
tudinal stebility axis; values of 1 must be calculated
for each angle of attack), feet

average fuselage helght at wing root, feet

average fuselage width at wing root, feet

vertical distance of quarter chord of wing root chord from
fuselage center line, positive downward, feet

nondimensional time parsmeter based on span (Vt/b)

longitudinal distance rearward from airplane center of
gravity to wing aerodynsmic center, feet

longitudinal distance from leading edge of vertical tall
chord to horizontal tall aerodynamic center, feet
(see fig. 6)

vertical distance from horizontel tail to base of verticsl
tail, feet (see fig. 6)

height of center of pressure of.vertical tail sbove longi-
tudinsl stability axis; values of 2 must be calculated
for each angle of attack, feet

aspect ratio

sweepback of wing quarter-chord line, degrees

taper ratio (Tip chord/Root chord); also, differential
operator in Laplace transform

dihedreal angle, degrees (see sketch of fig. 9)

dihedrel angle of wing tip, degrees

time, seconds B
alrspeed, feet per second

radius of gyration about principal longitudinasl axis of
inertia, feet

radius of gyration about principsel normal axis of inertia,
feet



NACA TN 2k09

+

radiues of gyretion qbout X axis, feet
Qkxoacosen + kzoesinzn) .

radius of gyretion asbout Z axis, feet
2,42 2,402
(szo cos“n + kxo sin-n

gxq/b
k7,
kx/b

kZ/b

product-of-inertia factor <<kZ02 - kX02> sin n cos n)

angle of attack of principal longitudinal axis of inertia,
degrees (see fig. 2)

angle of climb, degrees (see fig. 2)

angle of attack of longitudinal body sxis, degrees
(see fig. 2)

angle between principal longitudinﬁl exls of inertia and -
longitudinal body axis, degrees (see fig. 2)

alr density, slugs per cubic foot ' Tz

angle of bank, radians

*l
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A,B,C,D,E
P1sPp; o Py
Xl,xE,X3,X)+

D

P

T1/2

angle of yaw, radians

angle of sideslip, radians

rolling velocity, radisns per second (dg/dt)

yawing velocity, radians per second (dv¥/dt)

initial angle of bank, radians

initial angle of yaw, radians

initial angle of sideslip, radians

nondimensional initial rolling velocity (d@/do)
nondimensional initisl yawing velocity (a¥/do)

Routh's discriminant or real part of complex rooct R + Ii
imagginary part of complex root R + Ii

coeffilcients of the characteristic biquadratic equation

factors of the B, C, end D coefficients

roots of characteristic biguadratic equation

differential operator (d/dc)
reriod of the lateral osclllation, seconds

time to damp to one-half amplitude, seconds

time conversion factor (m/pSV)
nondimensional time factor (t/r)
relative density factor (m/pSb)
impressed rolling moment, foot-pounds
impressed yawing moment, foot-pounds

impressed lateral force, pounds
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impressed rolling-moment coefficient

Impressed yawing-moment coefficient

Impressed latersal-force coefficient

1ift coefficient (Lift/gS)

drag coefficient (Drag/qS)

rolling-moment coefficient (Rolling moment/qu)
yewing-moment coefficient (Yawing moment/qSb)
lateral-force coefficient (Lateral force/qS)

dyneamic pressure, pounds per square foot (22‘13\/'2>
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r B—%’}-
o - %a
TR
Cy
CYI‘ = -;E.
2v
c107,‘3
Cip. = &
HCIB
1 - —
P 2KX2
lJ-CnB
"
CYp
g T T2
Ci
1. = N
P ]+KX2
C
n,P = i
4K,>
Cy.
Ip =
Czr
1 =
Cnr
Oy = )



Subecripts:
wing

fus

tail
design

data

exp
V-taill
e

H

increment in CnP produced by 1ift and
forces

increment in Cn_P produced by drag not
1ift :

horizontal tail

section 1lift curve slope

wing
fuselage

used to designate vertical tail

NACA TN 2409

induced-drag

associated with

used to designste design under consideration

used to designate design for which force-test data are

avallable
experimental
V-tail
effective

horizontal tail

%
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CALCULATION OF LATERAL STABILITY

AND RESPONSE —

Various types of calculatlions may be performed to indicate in some
way the gtability of an sirplane or the response to gust disturbances
and control menipulations. The celculations most commonly made are cal-
culations of time histories of disturbed motions, period and demping of
the free motions, and spiral and oscillatory stability boundaries (lines
of neutral demping of the spiral mode and of the lateral oscillations).
Step-by-step procedures for performing these types of calculations ere
explalined in the text and derivations and additionsl pertinent meterisl
are presented in sppendixes A to D.

The period and demping calculations are the easiest of the three
types to perform. For this reason, and because the dynsmic latersal
stabllity of airplanes is at present specified in the flying-qualities
requirements in terms of the period and damping of the lateral oscilla-

tion, period and damping calculations are probably the most commonly
performed. '

Recent dynamic stebility work has indicsted, however, that the
reriod and demping characteristics of the free motions of an airplane
are not always a sufficlent indication of whether the dynsmic behavior
of an airplane following vaerious types of disturbances will be con-
sidered satisfactory. For this reason the calculation of time histories
of the motions of airplanes is becoming more common despite the fact
that these calculations are falrly lgboriocus. The increasing use of
sutomatic computing machines has also made the calculatlion of motions
more popular. '

For many years, calculations of stability boundaeries were the type
of calculation most commonly performed. In recent years, however, sta-
bility boundaries have not been considered to give an adequate indica-
tion of stability. Since boundaries are useful in some cases, however,
(for example, for quick approximation of the effects of changes in
dihedral and tail area) the methods of calculating the spiral and oscil-
latory stability boundaries are described herein. Lines of constant
period and damping of the lateral oscillation are related to stabllity
boundaries (lines of neutral stability). In some cases these lines of
constant period and dampling mey prove more useful than boundaries. Since
no extensive use has been made of lines of constant pericd and damping,
however, the methods of calculating these lines (presented in refer-
ences 8 and 9) are not given in the present paper.

The equations and methods of calculation presented in the present
paeper deal specifically witb the inherent motions of airplanes for the
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case of three degrees of freedom (roll, yaw, and sideslip) and linear.
stabllity derivatives. In order to perform similar calculations for
cases Involving additionel degrees of freedom, nonlinear derivsatives,
or sutopillots with time lag, special equations are requlred. The
methods and equations for treating these cases are presented in refer-
ences 10 to 18, Additional degrees of freedom for the case of free
controls are treated in references 16 to 18 and for the case of fuel
sloshing are treated in reference 10. The use of nonlinear derivatives
in stabillity celculations is covered in reference 11. Methods of
treating the effect of autopllots, including the effect of time lag in
the autopilot are presented in references 12 to 15 and 19,

For some cases the effects of aerodynamic time lag are Important.
There are two different sources of such lag: (1) the time required for
an serodynamic impulse to travel from one component of the airplane to
another (for example, the time required for a change in sidewash at the
wing to reach the tail - a phenomenon commonly referred to as lag of
sidewash); and (2) the time required for the growth and decasy of the
aerodynamic loads on the airplane components. For both of these cases
the time-lag effects usually become increasingly important as the period
of the lateral oscillation decreases. The effects of the first type of
time lag can be accounted for 1n some cases by modification of the sta-
bility derivatives. For example, the effect of the lag of sidewash on
the derivative Cnr is discussed subsequently under the section on

"Egtimation of Lateral Stebility Derivatives". In many cases, how-
ever, both types of time lag will require special stebility equations.
No genersal treatment of these cases has beenrn published but an indi-
cation of the method of treatment may be obtalned from the trestments
of autopilot lag in references 13 and 15.

CALCULATION OF PERIOD AND DAMPING

As pointed out in references 1 and 2, the perlod and damping of the
variocus modes of the lateral motion may be calculated from the roots of
the characteristic equation

i3+ 2 +D+E=0

by the equatilons

P = g%‘r
and
log, 2
T - . e < _ 0‘693-r

i Y
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where R 1represents a real root A or the real part of a complex root
A=R* Ii and I represents the imaginary part of a complex root.
Negative values of Tl/2 represent the time required to double amplitude

for unstable modes of the motlon.

The values of the coefficients A, B, C, D, and E may be
obtained by the method given in steps 1, 2, and 3 of the section on
"Calculation of Motions". If the period and time to damp are to be cal-
culated for a number of related cases, however, the values of the coef-
ficients A, B, C, D, and E may be more conveniently calculated by
a tabular procedure such as that shown as table I for making boundary
calculations.

Methods of determining the roots of the biguadratic characteristic
eguation are presented 1n sppendix C.

CALCULATION OF MOTIONS

Calculation of the latersl motione of an airplane lnvolves the
integration of three simulteneous differential equations (see
appendix A) to obtain a general solution in terms of the mass and
aerodynemic parameters of the airplane. The genersl equations, once
obtained, can then be used to obtain numerically the motions of any
airplene 1n terms of the varlation with time of the angles of bank, yaw,
and sideslip or some function of these angles such as rolling or yawing
velocity. Various methods, such as those given in references 20 to 22,
are of course available for integrating the differential equations.
Since the problems met in airplene dynamics are fairly complex, however,
many of these methods are not suitable because of the difficulties of '
computation that arise. The method given in reference 4 (based on the
Heaviside operational calculus) is satisfactory for calculating the
forced motions following application of external forces Or moments but,
without modification, this method cannot be used to calculate the motions
resulting from initial displacements in bank, yaw, or sideslip or from
initial values of rolling or yawlng angular velocity. A solution based
on the Laplace transformation is more satisfactory than thet based on the
Heavislde operational calculus because it permits direct calculation of
the free motions following any initial condition, in addition to calcu-
lation of the forced motions following application of external forces and
moments. The application of the Laplace transformation to the cslculation
of lateral motions is outlined in appendix B. The material presented in
this appendix is similar to the work presented in references 5 end 6
except that the mass and aerodynamic stability derivatives have been com-
blined as shown in appendix A to reduce the number of arithmetical and
algebraic processes required in numerical solutions.
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The process of calculating the motions is presented as a series of
simple though lengthy arithmetical and algebraic steps so that an under-
standing of the calculus involved 1n solving the differential equations
is not required. The method as shown is suitable for calculating the
motions as variations of @, V¥, B, p, and r with time for the case
of the free motions following initial angular displacements (¢o, Vo,
and B,) and angular velocities (DP), and (D¥), and for the case of
the forced motiuns resulting from constant impressed forces and moments
(Lc, N., and Y.). These are the cases for which motions are usually
calculated. It 1s also pogsible to calculate the motions resulting from
impressed forces and moments which are arbitrary functions of time by
the methods explaimed in references 6 and 7.

Motions Resulting from Initial Angular Displacements and Angular

Velocities and from Constant Impressed Forces and Moments

The six steps involved in obtalning a specific solution for the
lateral motlions of an sirplane are:

Step 1: Determine values of the following parameters:
(a) Mass characteristics:
m, kyx,, kzg, N and p
(p) Geometric characteristics:
S and b
(¢) Flight conditions:
Vv, Cy, and 7y
(d) Aerodynamic stability derivatives:
C1s Cngs Cygs C1p Gy Oy Cps Cn, snd Oy

The methods of determining the values of the aerodynamic stability
derivatives are glven in subsequent sections of this paper.

In cases vhere impressed forces and moments are used as disturbances,
determine the wvalues of the factors

c c c
[ n,’ Yo
that are eppropriate to the particular problen.
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Step 2: From the known factors, evaluete fhe followling parameters
which are the stebillity derivatives in the form in which they are used
in the calculation of motions:

ZB”EK&XECIB N =§L? ng yB‘=%CYﬁ
1P=¢CZP %='1ElZ§Cnp .' " yP:llEcYp
7’1"_‘%2'(:7.1. ﬁ'r=1l_;_za'cnr yr=)%-ICYr

Also, when lmpressed forces and moments are used, evaluate

p=
'-.l

1. =—t—o n.=-t-cC Yo = 5 C
c 1 (o} 2 “he c 3 “Y
(] EKZ Cc

The values of KX2 s KZ2, and Kyy can be determined from the following

expressions

Kx KX02c0 521'] + Kzoesinzn

KZ2 = Kzoecosen + Kxoesinen

Kyxy = (KZO2 - KXOE) sin n cos 7
where
g = o
Xo = 7B
kz,
X2, = 3

Step 3: Solve for the values of the asppropriate ones of the
following coefficients from equations (1) to (4):
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In all cases solve for the velues of 4, B, C, D, and BE:

A=1-KK> ™

B=F - 4yg

C = -PlyB + Po + P5yp + Pgyy - Pg (l)
D= P5 %? + Pg %; tan ¥ + P7 r

E = P3 %? + Py %; tan ¥ y

where

Py = -ZP - n. +_Kinp + Kal,.

Py = anr - Zrnp

P3 = ZBnr - Zrnﬁ

Ph = ZPnB - ZBnp

F5 = King - Ig

Pg = Kézﬁ - ng

P7 = -P2yB + P3yp + Pyy. - Py
The quantities P; to P7 are factors of the Qoefficients B, C, D,
and E which are combinations of terms that occur frequently in calcu-

lations of motions resulting from initial angular displacements and
velocities and which are consequently grouped together for convenlence.
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Calculste the values of a5, &3, - - - &85 when solving for the
engle of bank @ or the rolling velocity p:

8o = foh A

a; = §oB + (DF)oh

8y = B =BoPs + (D¢)o(-AyB + Kply - np) -
o9l - ) + 7 - 2

y ~ oles S v+ ) <ok a7 < 875 + 090 (5 -
Pg - Kolyg + nryB) + (D\lf)o(-P5yr + Pg + Kynyg - lryB) - & (2)

zc(n.r + yﬁ) + ng (Klyﬁ + Zr) - YcPs

cC
a) = (¢0P)+ - YoP3 + (Dg)Pg - (D‘F)OP5)—éL— ten ¥ +

Ic(nB - ngyy + nTyB) + nc(ZByr - ZB - lryB) - ycP3

Cy
By = (-chﬂ + nczg)'é_ tan ¥
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Calculate the values of by, by, . . ., bs when solving for
angle of yaw V¥ or the yawing velocity r:

by = VA ™N
by = ¥gB + (D¥) A
by = ¥.C - B - (D¢)O(K22P . np) + (W)o<-AyB + Koy - 1) -

ZCK2 + n,

o'
w
1

= -@.Pg 02—1‘ + 1:0(?5 C?L + P7) - BoP)y + (D¢)o(-P6'yp + Kplpyg -
nPyB> * (DW)O<P5yp - Kyngyp + Zpyﬁ)"' zc(KeyB * nP) B 7 (3)

n, (lp + yB) - YFg

c
by = [:-;zfojsq+ + ¥oP3 - (DF) Pg + (D\V)OP;_I-gi + e (nByp -

nPyB) +n, (ZPyB - lﬁyI) - ¥cPy

b5 = (chB - nclﬁ)%
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T

Calculate the values of cg, C3; « - «» ey’ iahen".s'éiﬂri'g; for the

angle of sideslip B: ’ o : : -

co = BoA O

c C : . _
cq = ¢OA —22 + VA -2£ tan 7 + BgPp + (D¢)0Ayp - (DV) Ay - 1) + ycA

Cr, Cy, - Cy,
Co = ¢OPl 2 + .qIOPl -E—ta'n 7 BOPQ + (D¢)OEA' e K'Zzpyr + Kelp *

C
Yy np + (KQZr - nr)yI—:I + (D\lf)ol:A TL tan 7y + Kynp¥r -
Kln-_p - Zpyr + Zp - (K'_Ln'r - ?,I)yg-} + ICGKer + K2 + yp) +
nc(-Vr -1 - Kly;> + ¥cP1

CL CL CL CL
c3 = ¢0P2 —2—+\VOP2 -2—‘b8.n7 + (D¢)°<-K21P -E—-ta.n 7 + p_pé—ta.ny +

CL, Cr, Cr, Cy,
Koly 5 - Bp ?> + (D\F)oélnp = tan 7 - ZP - tan y -
CL,

K 1) I ‘L L
10y %+ lpp) +tlfnp¥r ~Bp - Re¥p tp -~ K TRy

CL . Cn
nc<-lpyr + ZP + Zryp - K -2—+?tan'9 + ¥Po

> (1)

C C C C
N L L L
ch—chZPQta‘n7'nr2>+nc.ér§—-lp?tan7> )

Step 4: Solve for the roots A, Ap, A3, and Ay of the
biquadratic equation

D i3 2+ DA+ E =0

(5)
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where the values of the coefficients A, B, . . ., etc, ware given by
the solution of equations (1). Methods of determining the roots of the
bigquaedratic equation are given in appendix C.

Step 5: Use the coefficients obtained from equations (1) to (4)
and the roots of equation (5) to solve for the followling coefflclents:
Calculate the values of the factors A,, Ap, . . ., Ag when

solving for the angle of bank ¢ or the rolling velocity p:

Ar

N aoll5 + alxl“ + a2x13 + a3x12 + aydy + 55—W
l =

6Mr,2 + 5BAy " + hor S + 3002 + 2EA,
Ay = aox25 + alxgh + a2x23 + a3x22 + apdo + a5

6AL25 + 5BL;E + hcx23 + 3Dx22 + 2EAp

5 b 3 2
e = aox3 + alx3 + a2x3 + a3k3 + ahx3 +4§5

6AA.35 + 5Bk3h + chx33 + 3m32 + 2Erg >

(6)

- aOX45 + a1th + a2x43 + a3lu2 + ayd) + ag
6any> + 5B, + 4oay3 + 3002 + 2EA

Ay

a5
A5 = 5

5=

%'%'(ah'%%) )
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Celculate the values of the factors By, Bo, . . ., Bg when
gsolving for the angle of yaw ¥ or the yawing veloclty r=:

" 2 M
bghi” + DAyt + bory 3 + b3M2 + byl + bs

6a0,0 + SBA Y + boag3 + 3002 + 2EN)

bohg? + byro" + bakg3 + b3ro® + byho + b5
6a0p0 + SBAyT + hOAgS + 302 + 2EA,

5 4 3 2
baA + b A + boAh + baA + by + b
B3 = 03 1i™3 273 "3*3 yA3 3

5, bory? + ?1*hh + oom3 + b3ay® + byhy + bs
6Ax45 + 5Bx4lL + hcxu3 + 3Dxu2 + Z2EA)

b
5y = 2

1 D
B6=EQ’4'b5E)
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Calculate the values of the factors Cl, Coy -«
solving for the angle of sideslip B: s
o COL15 + clxlk + C2Xl3 + CBXlQ + Chxl
1 = -
6mh” + 5B>~lh + hong3 4 30n® 4 2may
L 3 2
e = cox25 + clxe + c2x2 + c3x2 +_cux2
6Ax25 + 5Bx2lL + JoapS + 30A2 + 2Ehs
c C0X35 + clk3)+ + 02X33 + C3X32 + C)_‘_X3
3 6a0g0 + 5BAGY + hChg3 + 3DA52 + 2Eg
c COXM5 + clx44 + cekug + c3X42 + chxh
* 6Aku5 + 5quh + 4cx43 + 3th2 + 2EA),
c
I
C5 = ¢

If equation (5) has conjugate complex roots, the values of the

.y C5 when

)

y
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(8)

coefficients (equations (6) to (8)) corresponding to these roots will
be conjugate complex. In order to facllitate treatment of this case it
This special notation

ig convenient to esteblish some special notation.

is explained 1n eppendix D.
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Step 6: The equé.tions of motion are written in different form
depending upon the roots of equation (5). If the characteristic equa-
tion has four real roots A3, A2, A3, and AL, the general form of

the equations of motion is used, as follows:

-~
g = Alecxl + Aeeor_)“2 + _A3ecx3 + All__e'UM" + A5c'+ Ag
¥ = Blec)"l + ]32e0)'2 + Bseg)“3 + Bh_ed)"l’" + 2850 + Bg
B = Clecml + Caem'2 + C3e0;\'3 + C;_l_erJML + 05 > (9)

o\ oA or oA
p = #@lxle T aghoe Bk Aghge 3 4 Ae H 4 A5)

oA oA oA oA
r = %.—Qslxle 1+ Bohge 2 + Bghge 3 + Bye * o+ B;)

If, as is generally the case, equation (5) has two complex roots and two
real roots (R + Ii, R - Ii, A3, and Ay), the equations of motion may be
expressed as

\

¢ = KAeUR cos(ol + wy) + A3ecx3 + All_ecmh + Aso + Ag

¥ = I{Bec'R cos (oI + wg) + B3eU)"3 + B)_l_edM’r + Bso + Bg

oR

B = Kee

-1 I
T E(AVR + I° cosGrI + Wy + tan 1 §>+ F (10)

A3)\.3e 3 + A}_I_A-)_l_ecxh' + A%

r = %E{B&E + 12 eUR coszI + g + ta.n'l ﬁI-> +

B3A.3ecm3 + B)_l_)‘.)_l_edM" + 35] )

cos (oI + ag) + Cze a3 Cpe ary Cs

o]
I
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where
o )
Ky = 2fR2 + 1,2 wy = tan”t 22
K =2\(§2'+I2 wp = ten™" ] } (10s)
B B B Rp
Ky = R02 + IC2 W, = tan™L ;C—
c

end Ry and I, are defined in appendix D.

If there are four complex roots (R + Ii, R - Ii, R!' + I'i, and
R' - I'i), the equations are

oR'!

¢ =K %R cos(ol + a.)A) + K,'e cos (oI' + wp') + A5cr + Aa

A

¥ = KBeUR cos(ol + wg) + KB'eUR‘ cos (oI' + wg') + B0 + Bg

B = KCeGR cos (oI + ay) + Kc'eUR' cos(oI' + ap') + Cs

1 55 OoR ' 1T
P:-_FE{A + I e cos(cI+wA+ta.n §)+A5+- o r (11)
2 2 oR! -1 I
Kp' 1= 4 I e cos(:rI' +wy' + tan Iv)]

r = %[KBQRE + 12 eaR cos QII + wp + tan'l %) + B5 +
1
KB'\/g'a + 112 TR cosGI' +wg' + tan™t EI{—,)] J
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where
Kyt = 2R, '? + 1,08 wy' o= ten™ I%"ﬁ
Kg' = 2VRg'? + 13'F wp' = tan™ EI{:%: L (11a)
Ky = 2¥Rg'? + 12 og! =tan—lRICT:
p,

The coefficients K,, Kg, Koy @y, g, and o are defined in equa-

tions (10a) and Ry, IA, Rp', and I,' are defined in appendix D.

Solve the sppropriate ones of these equations of motion (equa- .

tions (9), (10), or (11)) by substituting values of the nondimensional
time factor o in the equations and solving for ¢, ¥, B, p, or r.

Motions Resulting from Arbitrary Disturbances
The motions resulting from aerbitrary forcing funetions can be

moments by the methods explained in references 6 and 7.

A very useful ‘method of obtalning the motion resulting from various
abrupt gust and control disturbances is given by Jones in reference T.
In this paper it is pointed out that, although the component motions of
an alrplane must be calculsted simulteneously (that is, by simultaneous

differential equations), the effects of component disturbances may by

the principle of superposition be calculated separately and later added

in any desired proportion. Thus, 1f a given rolling moment causes a
20° bank in 1 second and if a gilven yawing moment causes & 5 bank in
1 second, the combined effect of both acting simultaneously will be a
25° bank in 1 second. Jones also points out a somewhat similar fact

with regard to the effects of disturbances that are not applied simul-

taneously. This fact is that, if a given disturbance which arises at
the time + = O 1is later augmented, the effect of the increment of
disturbance will run its course independently of the effect of the

original disturbarice. For exsmple, in a problem involving the correc-
tion for a gust disturbance by a manipulation of the control, the motion
produced by the gust disturbance can be calculated independently and the

motion caused by the assumed corrective control manipulation can be

added to it at any desired point. This example is illustrated graphi-

cally in figure 3.
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The principle of superposition may be applied anslytically as well
as graphically. The analyticel epplication which mekes use of Carson's
integral or Duhamel's integral is described in references 7 and 23.
This method 1s useful for caelculating the motions resulting from
impregsed forces and moments which are arbitrary functions of time., By
application of these methods, the solutlons for constant impressed
forces and moments can be used to obtain new solutions for any arbitrary
varigtion of impreseed forces and moments with time which can be
expressed by a mathematicsl formula. Some simple veristions of
iImpressed forces and moments with time ard thelr Laplace transforms are
given in reference 6. The transforms for any other function for which
transforms have been worked out may be found in tables of Laplace
transforms.

CALCULATION OF STABILITY BOUNDARIES

Oscillatory Stability Boundariles

As pointed out in the preceding section of this report, the degree
of stabllity of the uncontrollied motions of an airplane is indicated by
roots of the characteristic equation

M B3+ 4L +E =0

For stability the real roots or the real part of the complex roots of
the charecteristic equation must be negative. A useful discriminant
for determining some of the characteristics of the roots in stability
work is Routh's discriminant R (R = BCD - AD® - B°E), The use of this
discriminant in dynemic stability analyses has been pointed out in many
reports, for example, references 1, 2, 3, 5, 21, and 24, Routh has
shown (reference 20) that,1f R and the coefficient E are finite,
the necessary and sufficient conditions that the real roots and the
real parts of the complex roots should be negative are that every coef-
ficient of the biquadratic and also R should have the same sign.
Routh also showed that when R =0 and B and D have the same sign
there are & pair of complex roots with the real parts zero. Since the
value of the real part of a complex root indicates the stability of an
oscillatory mode of the motion of an airplane, the lateral oscillation
is neutrally stable when R = O and the coefficients B and D have
the same sign. Oscillatory stability boundaries can be determined,
therefore, by solving the equation R = 0 and checking to determine
whether the signs of B and D are the same. '

Since two of the most important stability derivatives affecting
lateral stability are the directional stebllity derivative Cnﬁ and
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the effective dihedrsal derivative CzB, boundaries for neutral oscil-

latory stabllity are usually calculated as a function of these two
derivatives as illustrated in figure 4. These calculations sre gener-
ally carried out by the method shown in table I. This table contalnse a
numerical example and step-by-step instructions for using the table.

The results of this numerical example are plotted in figure 4. The
procedure 1llustrated ln table I is first to assume values of the inde-
pendent variable CnB to cover the range for which the boundary is
required. The values of all the other mass and aerodynamic stability
derivatives- except CzB are then estimated, The value of CnB is T
generally assumed to have been varied by varying the size of the verti-
cel tall and consequently the tail contribution to each of the other
stability derivatives varies as Cnp is varied. The values of the
coefficlents A, B, C, D, and E and then R are calculated as
functions of gt

1 = —E— C -

The velues of 1g corresponding to the assumed values of CnB for the

condition of neutral oscillatory stability are next obtained by solving
the expression R = O which is a quadratic in ig that is of the form

ullae + leB + Wl =0

Finally, the values of CZB corresponding to the assumed values of CnB
are obtained from the values of ZB.

The values of 1p which satisfy the expression R = 0 must be

checked to determine whether they satisfy the other condition for

neutral oscilletory stability - that the sign of the coefficients B

and D must be the same. This check can be performed readily by sub-

stituting the values of 1p which satisfy R = 0 into the expression

for D which is a linear equation of the form . —

Thus, the sign of D 1is determined. The sign of B is a constant for
any glven value of CnB and is almost invariably positive since the

three predominant terms of- B contain the derivatives Clp’ Cnr’

and Cyp which in all practical cases contribute a positive increment
to the.value of B. -
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Since tvo vealues of CZB satisfy the condition R = 0 for each
value of CnB’ the R = 0 curve has two branches. As polnted out in

reference 24, one of the branches of the R = O curve generally repre-
sents. an oscillatory stability boundary and the déther branch represents
a line of numerically equal real roots with opposite signs. (See

fig. 4.) If neither of the values of Cig which satisfy the expres-

gion R = 0 for a particular value of CnB is found to represent a

point of neutral oscillatory stability, the lateral motion has no oscil-
latory mode for that value of CnB If both of the wvalues of CZB

which satisfy the expression R = 0 are found to represent points of
neutral osclillatory stabllity, the lateral motion has two oscillatory
modes. In this case, since the boundary D = 0 represents the line of
infinite period, the branch of-the R = 0 boundary which lles close to
the D = 0 boundary is usually the boundary for neutral stability of—
the longer period of the two oscillatory modes. A detalled discussion
of the significance of the stability boundaries and the reglons formed
by these boundaries is given in reference 24.

In calculating stability boundaries for a specific airplane a com-
plete solution such as that explained in the preceding paragraphs should
be made. TFor general studies of stabillity, however, approximate oscll-
latory stability boundaries may be calculated much more simply by the
methods shown in reference 2k,

As pointed out previously, methods of caelculating lines of constant
period and dsmping of the lateral oscillation are presented in refer-
ences 8 and 9.

Spiral Stebility Boundaries

Spirel stability boundariles, like oscillatory stability boundaries,
are usually determined as a function of the directional stebility deriva-
tive CnB and the effective dihedral derlvative CZB as illustrated in

figure 4. As pointed out in reference 1, neutral spiral stability
occurs when the E coefficient of the characteristic equatlion is zero
(E = 0). A spiral stability boundary can be easily obtained from this
relation. If expressions for E (in terms of ZB) corresponding to
several values of CnB' hgve already been obtained in the process of

calculating an oscillatory stability boundary, the equations formed by
setting these expressions for E equal to zero can be solved for. the
values of 13 (and hence CzB corresponding to the assumed values

of CnB. If the velues of E have not already been obtained in the
process of calculating an oscillatory stability boundary, a spirsl
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stability boundary for the level-flight condition (y = 0) can be cal-
culated simply from the equation -

Cip : _
Cip = G, Cos : (12)

Velues of CnB are gssumed within the range for which the boundery 1s
required. The values of Czr ang Cnr corresponding to each value of
CnB ere then determined. The tall contributions to these derivatlives
generally vary with Cnﬁ since CnB is usually assumed to be varied
by changing the size of the vertical tail.

ESTIMATION OF LATERAL STABILITY

DERIVATIVES
GENERAL REMARKS

Methods of estimating the lateral stsbility derivatives have been
presented in numerocus publications but no single report has contained
information for estimating the contribution of all principal airplane
components to all the derivatives for airplanes having any sweep angle
or aspect ratio. In the present paper, an epproach to such a presenta-
tion 1s made by the coordination of and reference to existing estima-
tion methods, by reference to publicatlons containing data which should
be useful in making estimates, and by the suggestion in some cases of
simple new empirical formulas. Detalled estimation methods are pre-
sented for low-subsonic-speed conditions but only a brief discussion and
a list of references are glven for transonic~ and supersonic-speed con-
ditions. In genersal, the estimation methods presented should be expected
to yield only fairly accurste values suiteble for making first approxi-
mations of dynamic stability. This limitation applies especilally to
the cases in which the derivatives sre based completely on theory.

For convenience, the references that should be useful in estimating
the stability derivatives are presented in table II. The references
are grouped according to the speed range covered (subsonic or super-
sonic) and according to the derivatives presented in each report. The
references for the subsonic case (references 1 and 25 to 94) are further
divided into two groups - one Including reports which contain estimation
methods and the other including reports which contaln experimental data
that should be useful in making estimates of derivatives. The
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references for the supersonic case (references 95 to 115) are sub-
divided according to wlng plan form.

The following sections covering the estimation of the nine sta-
bility derivatives are divided into three groups according to the type
of derivative - sideslip derivatives (CYB’ CnB’ CZB), rolling deriva-

tives (cnp, Cips cyp), and yawing derivatives (cnr, Cirs Cyy). The
derivatives CYP and Cy, have usually been neglected in mseking

dynamic lateral stability calculations because theory indicated that for
unswept wings CYP and Cy, were zero. Recent experimental data,

however, have indicated that both swept and unswept wings produce meas-
urable values of these derivatives (references 25, 59, and 86). Since
the vertical tail contributes to CYP and Cy,, it appears desirable

to estlmate these derivatives and to use them in the calculations of
stability unless it 1s established that for the case in question the
effects of CYP and Cy, on stabllity are negligible. TFor these two

derivatives, only the effect of the wing and vertical tail need to be
consldered.

The methods of estimating the rolling and yawing derivatives pre-
sented herein were obtained from theoretical trestments hased on the
agssumption of steady rolling end yawlng and from experimentel data
obtained principally from tests made under conditions of steady rolling
and yawing. The only informastion that applies directly to the oscil-
latory case is a limited amount of data on Cn, obtalned by oscillation

techniques. When calculations are made in which the oscillatory mode

is the subJject of interest, some consideration should be given to cor-
recting the derivetives based on steady rolling or yawing to account

for differences in the derivatives that are likely to exist as a result’
of differences between the oscillatory motlon and the steady rolling
and yewing motion. For example, the data of reference 82 have indi-
cated that, for flsp-extended or power-on conditlons, fairly large dif-
ferences might exist between the values of the tall contribution %o Cny
for the steady yawing and yawing oscillation cases. At present little
Informetion 1s avallable for correcting the wvalues of Cnr for the

steady yawing case to apply to the oscillatory case and, unfortunately,
little or no information is available for correcting the other stability
derivatives. '

S8ince most wind-tunnel force-test data that are likely to be used
in meking estimates of the stability derivaetives are probably for much
lower Reynolds numbers than those for the full-scale airplene, some
adjustments to the data are usually required to account for the dif-
ferences 1n Reynolds number. The effects of Reynolds number should be
considered in the cases of all the derivatives, especlally those which
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are estimated by methods that involve the use of force-test data.
Methods of correcting for Reynolds number effects for some of the
derivatives are discussed in the following sections which cover the
egtimation procedures. In the cases where the Reynolds number effects
are not discussed, it can be assumed that any abrupt variation in the
derivetives near the stall for low-scale data will also be present for
the full-scale alrplane but will probably occur at a higher 1ift coef-~
ficlent because of the higher maximum 1ift coefficient of the airplane.
An indicetion of the lift-coefficient range over which the theory may
not be expected to give relisble values of stability derivatives for the
full-scale airplane can be obtained from large-scele drag data. The
analysis of reference 86 indicates that the variation of the derivstives
with 1ift coefficient 1s different from the theoreticsl variation at
1ift coefficients above that at which the drag due to 1ift increases
sbruptly from the ideal value Cr2f=A.

The effects of Mach number and power are not treated in the sections
on the individual derivatives but are discussed briefly in separsate
sections. A detalled treatment of these effects, including design
formulas and cherts, was consldered beyond the scope of ihis paper.

THE STDESLIP DERIVATIVES Cy,, Cng, Cig

" No satisfactory purely theoretical methods have yet been developed
for obtaining accurate estimates of the sideslip derivatives CYB’ Cnﬁ’

and Cza for a complete airplane, primarily because of large inter-

ference effects between the various airplane components and because of
large, and often unpredictable, variations of the derivaetives with angle
of attack. Fortunately, these derivatives can be obtained from conven-
tional wind-tunnel force-test data. Such experimental data are essential
to the accurste determination of sideelip derivetives. It is, of course,
highly desirable to have force-test data for the exact airplane design
under conslderstlon, but reasonsbly accurate estimates can usually be
made by correcting the force-test data for a generally similar design.
The methods of correctlng the force-test data on a similar design for
use in the case under consideration are covered in the following sec-
tions. In the formulas presented, the subscript word "design" is used
to designate the design under consideration and the subscript word "data”
is used to designete the similar design for which force-test data are
available, '

Force-test dats should be used to determine the effect on the side-
slip derivatives of such airplane components as leading-edge high-lift
devices, stall-control devices, trailing-edge flaps, nacelles, external
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stores, canopies, and dorsal and ventral fins. The effect of leading-
edge high-1lift devices is usually merely to extend to a higher 1ift
coefficlent the same variation of the derivative with 1ift coefficient
as for the plain wing. Trailing-edge flaps often have large effects on
the contributlons of both the wing and the vertical tail to the sildeslip
derivatives (references 39 and 69); and since these effects are not
eagily estimated, it appears that In these cases use of force-test data
is essentlal. The addition of nacelles and external stores generally
has been found to decrease the directional stability factor Cng

slightly. The results of a limited amount of research to determine the
effect on the sideslip derivatives of the size and shape of canopies

has been reported in references 48 and 73 but these results are inade-
quate for making accurate predictions of the effects of canoples. The
effects on the sideslip derivatives of dorsal and ventral fins are
usually small at the small and moderate angles of yaw that are generally
considered in stability calculations. (See references 47 and 71.)

CYB

In estimates of the lateral force due to sideslip derivative CYB’

force-test data for the design under consideration should be used when-
ever possible, If such data are not avallable, data for a similar
design can be used and corrected as follows:

Wing-fuselage.- Since the wing-fuselage contribution to CYB is

usuelly relatively small compared with that of the vertlcal tall, great
accuracy 1s not required in estimating this factor. This contribution
mey be estimated as follows:

(1) Wing: If the wings of the two designs are generally similar
the difference in CYBwi can be considered negligible and no correc-
ng

tion is necessary. The theory of reference 25 does not appear to be
suitable for use in estimesting cYBwing‘

(2) Fuselage: If the two fuselages are similar in shape, the
difference in CYBfus can probably be estimated satisfactorily by cor-

recting for the difference in the relative size of the fuselage and
wing for the two airplanes. It appears, however, from table X of refer-
ence 69 unlikely thet a reliable prediction of CYpp,y ©con be made

directly from the geometry of the fuselage. Some additlonal data on
CYBf are presented in reference T7. Experimental data from other
us ~ '

investigations have shown that differences in fuselage crossw-section
can cause very large differences in the wvarlation of CYBfus with

angle of attack. For example, in the case of.a flat fuselage with the
major cross-sectional axis horizontal, the sign of CYﬁf has been’
us
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found to reverse at moderate and high angles of attack. Force-test
data are essential for making estimates in such cases. B .

(3) Wing-fuselage interference: For low-wing or high-wing con-
figurations, wing-fuselage Iinterference causes the value of CYB to be

greater than that obtained by adding the contributions of the wing and
fuselage. (See reference 39.) If the vertical location of the wing on
the fuselsge is generally similer for the two designs, however, any
correction for a difference in this interference factor can be neglected.

Vertical tail.- Accurate estimates of CYBtail are necessary

because this factor is used to estimate the taill contribution to several

other derivatives. This factor is especially important at low angles -

of attack because in this case the tail contribution is often much

greater then the wing-fuselage contribution to all derivatives except

Cilp. For this reason it is highly desirable to have tail-off and taill-

on force-test date for the design under considerstion or for a very

similar design. Corrections to the data for a similar design can be -
made as follows: ” o

(1) Correction for differences in wing area, tail area, and tail
lift-curve slope cen be made by the following formula: o

C S
La‘ tail)
( oY ‘) - (CYB ) ( ail design Sdata
tall tail S
design i datea (CLatailStail)data design

-(13)

The wvalue of CL@tail can be obtained from figures 5 and 6 which are

based on the theory of reference 34 and on the theory and data of refer-
ences 28 and 35. "The chart of figure 6 can be used to estimate the

change in the effective aspect ratio of the vertical tail caused by the
end-plate effect of the horlzontal tail. It should be emphasized that

for the best accuvracy the charts in figures 5 and 6 should be used in
conjunction with formula (13) for correcting existing force-test dats

and not for making a direct estimete of CYBtail' -

(2) In the case of V-tails, the correction for 'CYBtail can be

made as follows:

(KC Sv-tail singf)
: design S data

Sqesign

.
(JYﬁ _ . ) = (CYB . ) .
V-tail/design V-tail/gata G«qﬂwsv_tail Siﬂ%?data

(1k)
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where the terms CLaN’ I'yn and K sare the same as given in reference 30

and are defined as follows:

CLa slope of . the tail 1ift curve in pitch measured in the plane
N normel to the chord plane of each tall panel

r dihedral angle of tail surface measured from XY-plane of the
tail to each taill panel, degrees

K ratio of sum of l1ifts obtained by equal and opposite changes
in angle of attack of two semispans of tail to lifts obtained
by an equal change in angle of attack for the complete tall

Values of the term K, which are usually about 0.7, can be obtained from
reference 30.

(3) Since large differences in sidewash and dynamic pressure at
the tall can be caused by differences in wing plan form and wing loca-
tion, use of experimental data for the specific design or at least for
a design which has a closely similar wing-fuselage combination and
vertical tail location is extremely desirable. No methods are available
which permit accurate predictions of sidewash at the tail, but the
experimental data of references 39, 49, and 69 can be used to obtain
some indication of the variation in sidewash with vertical location of
an unswept wing on a fuselsge and the experimental date of references 36
and 77 provide additdiongl information on sidewash at the tail. Other
experimental data indicate that the slidewash fields produced by highly-
swept; low-aspect-ratio wings or by fuselages of “flat cross section can
sometimes be strong enough at high angles of attack to reverse the
effectiveness of a conventionally-located vertical tall surface. Until
8 reliable method 1s developed for predicting these large sidewash
effects, force-test data appear to be the only means by which satisfac-
tory estimates of CYBtail can be obtained.

CnB

Although attempts have been made to develop methods for estimating
the yawing moment due to sideslip (static directional stebility) deriva-
tive Cng (for example, references 68 and 69) no relisble method has

yet been obtained. The use of force-test data therefore seems impersative.

Force-test data for the design under consideration should be used
if available. If such data sre not available, use data for a similar
design and correct as explained in the sections to follow.
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Wing-fuselage.~ The corrections for the wing-fuselage contributions
are: ‘

(1) Correction for wing ~ From figure 7 (taken from reference 25)
the values of (?nB/Cngwing for the design under consideration and for

the design for which test data are availsble can be determined. The
effect of differences in tsper ratio can be neglected. (See refer-
ences 60 and 66.) The difference between these values of Cng/CL

should then be added (with proper regerd for sign) to the experimental
data for the complete model.

(2) Correction for fuselage - The formula

Canu 1. 3(Fuselage volume)(g) (15)

can be used to calculate the Cnﬁ of the fuselage (per radian) for the

design under consideration and for the similer design for which force-
test data are available. The differences between these two values can
then be added (with proper regard for sign) to the force-test data for
the complete model. Formula (15) does not include the effect of fine-
ness ratio and should not be used for fineness ratios less than 4. This
formula is an spproxlmate empiricel expression which should not be used
to estimate the wvalue of Canus directly but should only be used as

indicated to determine a correction for force-test data. This correc-
tion method should not be used in the cases of high angles of attack
when there are large differences in fuselege configuration. Force-test
data are essential in such cases.

(3) Correction for vertical location of the wing - If the designs
are generally similar, the correction for the verticasl location of the
wing on the fuselage cen be neglected. (See reference 39.)

(4) Correction for center-of-gravity position - If the center-of-
gravity position for the design under consideration is asppreciably 4if-
ferent from that for the design for which force-test data are available,
the velue of Cnﬁ for the wing-fuselage combination can be corrected

by multiplying the value of CYB for the wing-fuselage combination by

the distance between center-of-gravity positions (expressed in wing
spans).
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Vertical tail.- Corrections to CnBtail for differences in
CYBtail and tall length 1/b can be made by the following formula:

1
(CYBtail o )de slgn
1

5)
( Bt&il data
The contribution of wing-tip fins to Cnﬁ is treated in refer-

ences 70 and 84.

(16)

(CnBtail) design - (cnﬁ'tail )data

CzB

In estimates of the rolling moment due to sideslip (effective
dihedral) CzB, force-test data for the design under considerstion should

be uged. If such data are not available, data for a similar design can
be used and corrected by the methods that follow.

Wing-fuselage.- The corrections for wing-fuselage contributions are:

(1) Correction for wing - From figure 8 (based on reference 25)
the theoretical values of CZB/CL for the deslgn under consideration

and for the design for which data are available can be determined. The
difference between these two theoretical values can then be added (with
proper regard for sign) to the experimental data. Consideration should
be given to scale effect, airfoill section, and surface roughness on the
value of CzB for highly swept wings. The 1lift coefficient at which
the experimental varistion of CZB with 1ift coefficient departs from

theory 1s greatest at high Reynolds numbers and for smooth wings with
round leading edges. For wings with rough surfaces or sharp leading
edges the effects of Reynolds number on CZB are usually amall and low-

scale wind tunnel data can be used. For airplanes having very smooth
sweptback wings with rounded le&ading edges, however, some correction
should be made for scale effect when estimations are made from low-
scale wind-tunnel data. Since no rational method has been developed
for meking such corrections it is suggested that, for 1ift coefficients
higher than that at which the experimental dsta departs from the theory,
an average of the theoretical and low-scale experimental values be used.
Conservative dynamic stability results will usually be obtained if the
uncorrected theoretical values of CZB are used because these values

are ordinarily greater (more negative) than measured values and because
the larger negative values of CZB uguelly tend to decrease the dynamic
lateral stability.
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(2) Correction for wing dihedral - The effect of dihedral on C3
is treated in references 29, 39, 51, 58, 66, and 79. Correction for
the difference in dihedral between the two designs can be made by
miltiplying the incremental geometric dihedral angle (in degrees) by
the factor CzBP obtgined from figure 9. A plot of CZBP against

aspect ratio for taper ratios of 1.0, 0.5 and 0.25 (obtained from refer-
ences 58 and 66) and a formula from reference 50 for correcting for
sweep are presented in the upper portion of figure 9. The lower chart
and formula in figure 9 (developed from reference 66) should be used in
addition to the upper chart and formula of figure 9 to estimate the
values of 01B for the case of a wing with partiasl-span dlhedral.

Although this chart and formula epply directly only to wings with one
dihedrel breask they‘can.be used to estimate the ClBr for wings with

two or more dihedral breaks by the method described in reference 66.
The effect of drooped wing tips and of wing-tip end-plates on Czﬂwing

should be determined by experimental data since no reliable estimation
procedure for these effects i1s available.

(3) Correction for wing-fuselage interference - Although the con-
tribution of the fuselage alone to CzB 1s usually negligible, the

interference between the wing and fuselege can grestly alter the value
of CzB of the wing. This interference is such that a high location

of the wing on the fuselage gives more positive effective dihedral
(higher -CZB) and a low wing location gives less positive dihedral
than a midwing positlon. This effect is treated thearetically in
reference 67 and has been studied experimentally in references 38 to L42.
The following simplified expression for estimating the increment in CZB

caused by wing-fuselage interference has been developed from the rela-
tionships presented in reference 67 and in other sources:

Zqy h + w
=1, -
ACy NE (17)
This expression hes been found to glive reasonably good agreement with
experimental data for a variety of configurations. It 1s suggested
that values of ACIB be calculeted from this equation for both the

design under consideration and for the design for which force-test data
are availgble. The difference between these values can then be added o
(with the proper regard for sign) to the force-test data. '

Vertical tail.- The wvalue of CZBtail determined from force-test
data on'a similar design can be corrected as follows to obtain CZBtail
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for the design under ccnsideration:

Cy E)

c Zz
( Yoiai1 b)data

c = [C
( zﬂtail)design ( ZBtail)da.ta

The results of reference 35 indicate that CZBt can also be affected
gil

by the location of the horizontsel tail with respect to the vertical
tail, If the two designs have approximately the same horizontal tail
size and location, however, this effect can be neglected.

The value of Cig, ., for a V-tail can be estimated from the

followling empirical formuls: ~

Cy
Py_tail
3 ’ir;zsz"(bv-tail*'”Zv-tail 81N Daogien

6y _tas1) & )
V-tall design_ Bv ~tail data CYBV-tail b + LFZ 1 I‘)
5 sin V-tall V-tall sin data

-/

~—

(19)

where by.tgil 1s the developed (not projected) span of-the V-tail,
zy-tgil 18 the vertical distance from the center of gravity to the
chord of the V-tail (positive up, and I' 1s the dihedral angle of

the V-tail. More information on V-tails can be found in references 30,
61, and 62.

In the case of a vertical tall located on the wing, there 1s, in
addition to the incrementsal CzB produced by the tall lateral force,

an Iincremental CzB produced by the interference effect of the wvertical
tall on the wing. 8ince this interference effect varles greatly with
spanwise and vertical position of the tail, it should be determined

from force tests. Usually the irverference is such that a vertical tail
above the wing gilves a negative _ncrement of CzB (positive effective

dihedral) and one below the wing glves a positive increment of CzB.

In general, the largest interference effects are obtained with vertical
tails at or near the wing tips.
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THE ROLLING DERIVATIVES cnp, czp, CYP

CnP

The wing and vertical tall are the only airplane components that
contribute appreciably to the yawing moment due to rolling derivaetive
CnP' The contributions of the fuselage and horizontal taeil can ususlly

be neglected.

Wing.- The contribution of the wing to CnP cen be estimated from

the formula and charts of figure 10 which were taken from reference 86.
Although these charts apply strictly only to wings having a taper ratio
of 1.0, experimental data have indicated that they will also provide
fairly good estimates for taper ratios of 0.50, 0.25 and 0. In the
estimation formila

(2055)y

AC

(2

[T)a e =

the value of CDQ)Q should be determined, if possible, from force-test

data obtained at high Reynolds number on the wing under consideration,
since low Reynolds number data might indicate values of Cpg}q that are

too large. For the case of smooth wings with a large leading edge
radius and low or moderate sweep, 1t 1s suggested that (Cp,), for the

airplane be assumed to be zero at all 1ift coefficients up to the stall.
This assumption will result in larger negative values of Cnp than

would be estimated from low Reynolds number data on (CDo)a, and con-

sequently should lead to comservative dynamic stability results since
an increase in CnP in the negative direction has been fourd to cause

a reduction in dynemic stablility. The value of (C for highly swept
Dola 2

wings 1s often very large at high 1ift coefficients, especlally for
wings with rough surfaces, sharp leading edges, or triengular plan form.

For these cases, values of (CDo)m determined even from low Reynolds

number data might lead to reasonably good estimates of Cnp- In all

these cases, however, high-scale drag deta should be used whenever it
is available. :

Effect of high-lift devices.- The principal effect of leading-edge
high-11ft devices is to extend to a higher 1ift coefficient the linear
vaeriation of CnP with 1lift cocefficient. The formula and charts of

figure 10 are directly appliceble to this case. The effect of
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trailing-edge high-11ft devices is not so straightforward, but experi-
mental data have Indicated that the formuls and charts of figure 10
also glve reasonably good estimates in this case.

Vertical tail.- The contribution of an isolated vertical tail
surface to CnP can be estimated by the following approximete formula

which has alsgo been commonly used to estimste CnPtail of a complete

airplane:

o L2 (21)

c = .2 = =
Dptail 5 b “YBrasl

The values of CYBtaii should be determined from force-test dats as

previously discussed. Instead of the geametric tail length /b, it
willl usually be better to use the effectlve tail length -Cp Cy
Btail/ “Ptail

as determined by force-test data. Formula (21) then becomes

c = 2(2\c (21a)
“Pras1 (b) "Bras1

In the case of the conventionally located vertical tail surface, how-
ever, the rolling wing produces a sidewash at the tall which greatly
alters the tall contribution to Cnp- This sidewash causes the values

of C_anc 0 to be much more negative than is indicated by formula (21).
a .

This effect is discussed more fully in reference 36 in which is also
presented a methed for estimating the sidewash. Some preliminery theo-
retical studies have indicated that the effect of the sidewash on

CnPt 1 verles conslderably with tail size and tail location and to
a

some extent with wlng plan form. A comprehensive experimental verifi-
cation of this theory is planned but as yet only a few scattered checks
hgve been obtained. For the case of the conventionslly located vertical
tall surface, the following formula has been found to give estimates
of CnPt i1 that are in fairly good agreement with experimentsl data:

&

11z z
C 2 =2 _ (2 c o0
“Piail -.bE (b)a;g YBiat1 (22)

or

z (z\ ’ ..
C -2|Z2_ (2 c -
MDigil [b (b)@=oj DBiail (22a)
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This formule is based on the assumption that CnPtail is zero at O° angle

of attack and varies with angle of attack in the same manner as Indicated

by formulas (21). Formula (22) or the method of reference 36 can be used

satliefactorily for first approximetions of CnPt 11 for most configura-
a

tions with conventionally located wvertical tails. For more saccursate
estimates, especially for configurations having en unusual teil size or
tail location, experimental datae should be used. '

For wings of triangular plan form with vertical talls eilther
directly sbove or ebove and slightly behind the wing, experimental data
have indicated that neither formuls (21) nor formula (22) gives an
accurste estimate of Cnptail but that an average of the wvalues obtalned

by the twe formulas provides a fajrly good estimate.

It is obvious that these methods of estimating Cnp are only

approximate and are open to question in many cases. Experimental and
theoretical studies are currently being made to provide Better methods
of estimeting CnPtail and, wvhen these methods become availeble, the

approximate methods presented herein should be discarded. At the present
time, however, formulas (22) and reference 36 will usually provide much
more accurate estimates of CnPt i1 then formuls (21) which has been

a

in common use up until this time.

Czp

Wing-fuselage.- Most of the rolling moment due to rolling (dsmping-
in-roll derivative) Czp of an airplane is produced by the wing. The

effect of the fuselege can be neglected unless the ratio of the diameter
of the fuselage to the wing span 1s relatively large (greater than
sbout 0.3). For large values of this ratio, the value of Clp will be

smaller than thet for the wing alone by an amount that can be estimated ™
from a consideration of the aresg and lateral center of pressure of the

wing area included within the fuselage. (See references 103, 108,

and 112.)

Wing.- The demping in roll of wings has been the subject of many
experimental and theoretical investigations. (See references on Cip
in table II.) As & result, some methods of estimating C1p have been

developed which have been found to give reasonably good agreement with
experimental results. The method presented in reference T9 appears to
give sufficiently accurate estimstes of CzP for zero 1lift. This
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method is extended in reference 89 to permit the estimation of CZP

over the normal flight range of lift coefficient. Estimation charts
and formulss from reference 89 are presented in figure 11.

" High-1lift devices.- Experimental data have indicated that the
damping in roll of wings at low and moderate 1ift coefficients 1s not
greatly affected by the addition of high-lift devices such as trailing-
edge flaps, leading-edge flaps, slats, and slots. The principal effect
of such devices is to increase the 1ift coefficlent at which the sharp
decrease .in Czp occurs. The charts and formulas of figure 11 can be

used to estimate the Czp of wings with either full-spen or partial-

span high-1ift devices with fair accuracy desplite the fact that the
method 1s not strictly applicable to partiel-span high-lift devices.
(see reference 89.)

Wing-tip fuel tenks.- The use of wing-tip fuel tanks usually
increases the damping in roll of the wing. The experimental data of
reference 91 for unswept wings indicate that the magnitude of the
increase varies with angle of attack and depends upon the wing taper
retio and on the size and location of the tanks. Unpublished experi- .
mental datae indicate similar effects of wing-tip tenks on sweptback
wings. The following approximate formula for estimating the lncrement
in Czp produced by wing-tip tanks at low 1ift coefficients is based

on the limited smount of avallable experimental date and should not be
expected to yield very close quantitative estimates:

Maximum taenk dliameter
AC7 = (e ) ( )(KT) (23)
( P) tanks ( P/tanks off Wing span

where, for symmetrically mounted tip tanks,

Kp = 6
for tanks mounted below the wing tip or forwsrd on the wing tip,
Kp =3
and for pylon-mounted tip tanks,
Kp = 1

Experimental data for both unswept end swept wings indicate that
(ACZP)tanks usually becomes smsller with increasing angle of attack

and, in some cases, actually reverses sign at high angles of attack so
that the tanks are decreasing rather than increasing the damping in roll.



NACA TN 2409 ' 1 .

The data of reference 91 can be used to obtain an approximate estimate
of the effect of angle of attack for unswept wings.

Tall surfaces.- The contribution to Czp of conventional type

horizontal and verticel tail surfaces is ususlly very small and, in
most cases, negligible. When an airplane rolls, the wing produces a
rotation of flow at the tail surfaces which reduces the already small
demping moments of the isolated surfaces, except in the case of the
vertical tail at high angles of attack where the tall center of pressure
is below the center of gravity. '

The contribution of an extremely large horizontal tail to Czp

might not be negliglible and can be estimated by multiplying the value
of CZP for the particular tail plan for% o%ta ed from the charts and
formulaes of figure 11 by the factor 0.5 ?;'Tf' in which the fac-
tor 0.5 is included to account for the rotetion of flow produced by the
wing.

The contribution of an isolated vertical tall surface to CIP 1s
given by the following approximate formula:

2
VA .
o =2 —) C . ok
"Drai1 (b YBias1 _ (24)

As in the case of Cn.Ptail this formula can be modified to provide an

approximete correction for the effect of the wing on the damping in
roll of conventlonally located vertical tail surfaces:

Clptesr = 2(12?) l:% ) (%)m_.;lczﬁtail (25) |

An anslysis of thls expression indicates that the value of Czpt i1 is
&a

negligible at low and moderate angles of attack where z/b 1is positive
but that it might be fairly important at very high angles of attack
where z/b is a large negative value. As in the case of Cnp, experi-

mental data indicate that, for a vertical tail located either directly
gbove or slightly behind a2 wing of triangular plen form, the value of
CZPtail can be estimated with better accuracy by an average of '

formulas (24) and (25) than by formule (25) alone. For conventional
tail arrangements, however, formula 25 gives better correlation with
experimental data.
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o
¥p

Wing.- The following formula for the derivative Cyy (1Lateral

force due to rolling) from reference 86 is based on experimental dsta
and is the same as that presented in reference 25 except for an addi-
tional correction to account for tip suction:

C1, Athcos A arA+y

CYp A +cosa 1 (26)

The data of reference 86 show that this formuls applies only for 1lift

C
coefficients below that at which the drag factor Cp - ;%— begins to

increase. At higher 1lift coefficients the experimental data indicate
smaller values of Cy, than given by formula (26). For these cases an

epproximation of the value of CYP can be obtained from the experi-~
mental date of reference 86. As in the case of Cnp, the break in the
varistion of CYP with 1ift coefficient should be expected to occur

at lower 1lift coefficients for wings having sharp leading edges or
rough surfaces and for wings tested at low Reynolds numbers.

Vertical tail.- The discussion concerning Cnpt 1 and Czpt 11
a -3

is also applicable to C . The value of Cy. for an isolated
PP ° “Ypia1n Ypra11
taill surface is given by the formula:

z
c = 2(%)c 2
Tppas1 (E) TBrat1 (27)

This formule can be modifled as follows to account approximetely for the
effects of wing sidewash in the case of a conventionally located vertical

tail:
z 4
Cy -2 2% . (—) :ICY (28)
Pigil [b Plo=0| "Bia11

An sverage of formulas (27) and (28) can be used for tails located
either directly above or above and slightly behind the wing.
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THE YAWING DERIVATIVES Cp,., Ci1,, AND Cy,

Cny

Wing-fuselage.~ In the past, the contribution of the wing-fuselage
combinetion to yawing moment due to yawing (demping in yaw) derivative
Cn, has usuelly been found to be small compared to the contribution of

the vertical tail. The fuselage contribution to the damping in yaw
depends, of course, on the relstive size of the fuselage and wing. In
the past, the relative size of these components has generally been such
that the fuselage contribution could be neglected. (See references 82
and 83.) For some recent designs which have a large uselage relative
to the wing, however, the fuselage contribution to Cp, is important.

In the case of fuselages having flat sides or having s flattened cross

section with the major axis verticel the fuselage contribution masy also
be Iimportant and some fuselage contribution to Cp, should be assumed,

especially at high angles of attack. On the other hand, experimental
data have shown that e flattened cross-section fuselage with the msjor
axis horizontal can have negative damping in yaw at moderate and high
angles of attack.

The contribution of the wing to Cnr can be estimated from the
formula and charts of figure 12 which were taken from reference 25.
Values of Cp, for the wing should be estimated from force-test data.

For values of X/ grestly different from zero, the charts of refer-
ence 25 can be used. The formula and charts of figure 12 are not con-
sidered reliable &t high angles of attack, especially for swept wings.
The use of experimentel data from the references on Cn, listed in

table II is recommended in this case.

The effect of partial-span inboard fleps on Cn, can usually be

neglected. (See reference 82.) The effect of full-span trailing-edge
or leading-edge high-1lift devices can be estimated satisfactorily from
the formule &nd charts of figure 12. Values of Cp, in this casé are

of course, for the wing with the high-1ift device installed.

Vertical taill.- The contribution of a conventional-type vertical
tail to CnT can be estimated from the formula

(L2 .
Coria1l = GE) “YBias1 (29)

b4
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or, with the effective tail length _Cnﬁtail/CYBt 11 substituted for
a

Cngt . 2 . e
2&___51_)_ (292a)

C
TBta11

the geometric tail length 1/b,

C =
Oreeil

The experimental velues for cnrtail presented in reference 82 for

power-on or flap-down configurations are 30 to 40 percent greater than
values predlicted by formulas (29) or (29a). These differences are
attributed to lag of sidewash effects in the free-oscillation tests
used in measuring Cp,.. In estimations of Cnrtail for stability cal-

culations, similar lag of sidewash effects should be assumed if the
oscillatory mode is of primary importance but no lag of sidewash should
be assumed 1f the gperiodic mode 1s most important.

Methods for estimating the Cnrtail for wing-tip vertical tails

are presented in references 70 and 82.

Czr

The wing and vertical tail are the only ailrplane components that
contribute appreciably to rolling-moment-due-to-yawing derivative Ci,

of an airplane. The contributions of the fuselage and horizontal tail
can usually be neglected. A semiempirical method for estimating Cip

is presented in reference 85. This method involves the use of experi-
mental date on the parsmeter CzB to correct the theoretical-values of

Cering glven in reference 25 and to estimate the value of Clrwing'

Wing.~ The formulea of reference 85 and the charts of Cz:/CL from
reference 25 for estimating Czrwing are given In figure 13. The
values of CZB/CL to be used in the charts can be obtained from fig-
ure 8. For taper ratios less than 0.25, values of Clr/bL and CZB/bL
for a taper ratio of 0.25 can be used. The vealue of CZBexp used in
the formula should be the same as the value of CZBwing estimated from

experimental data by the method indicated in the section on CZB‘ In
the case of C1,, however, (unlike the case of CzB) conservative
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dynamic stability results will usuelly be obtalned if the smaller wvalues
of the derivative (based on low-scale experimental dsta) are used
instead of the larger (theoretical) values. This difference is a result
of the fact that either an increase in the normally negative value of
CzB or a decrease in the normally positive value of C3,. can cause

reduction in dynamic stability. As pointed out in reference 85 the:
estimation procedure shown in figure 13 appears to account satisfactorily
for the effects of high-1ift devices, wing, dihedral, and airfoil section.

Vertical tail.- The contribution of the vertical tail to Ci, 1is
usually estimated by the formuls )

Clrggsr = =2 (%)(%)CYBtail (30)

where CYBt 11 is preferably obtained from force-test data. When
experimental dete on Czﬂtail are availaeble, the following formula fiom

reference 85 can be used and will probably be more reliable than equa-
tion (30) because it takes into account any interference effects that
might cause the effective vertical location of the center of pressure of
the tall to be different from the location determined by geometrical
procedures: -

)
Clreasn = ‘2('5)07431;&11 - - (31)

or with the effective tail length CnBtail/bYBtail substituted for the
geometric tail length 1/b,

C -
tail Btails tail L _ e

CYr

Wing.- The theory of reference 25 gives values of the derivative
Cy, (lateral force due to yeawing) for the wing for a taper ratio of 1.0.

The experimental data of references 25 and 59 indicate that this theory
is inadequate for making reliable estimates of Cy, wing' It is recom-

mended therefore that the experimental data given in references 25, 58,
59, and 60 be used in making estimates of Cer1ng
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Vertical tail.- The value Ofm.CYrtail can be estimated by the

formule

I

c =2 tc 2
Tria11 b “YBtai1 (32)

or by the formula in which the effective taill length -C
Y © _ 184011 /Beaty
is substituted for the geometric tail length 1/b:

CYrigsr = ZC0Bygyn (32a)

The discussion of lag-of-sidewash effects for Cnrtail apply also to

-~

CYrigyye
EFFECTS OF MACH NUMBER

The effects of Mach number on the lateral stability derivatives
have been trested theoretically in many investigations (see table II)
but very little experimental data have been obtained to verify this
theoretical work. Moreover, only a small part of this experimentsal
work has been covered in published reports (reference 111) because most
of it 18 clasgified at the present time. It appears, therefore, that
estimates of the lateral-stabllity derivatives for the time being will
have to be based largely on theoretical work.

The effects of Mach number on the stability derivatives can be
usually considered negligible for all airplene components except the
wing and vertical tail. For the low-lift-coefficient condition in the
case of many high-speed airplanes, the verticel tail contributes more
than the wing to all the stability derivatives except Cip. For this

reason, in calculations for tramsonic or supersonic speed conditions it
1s especlally importent to know the effects of Mach number on the
vertical-tail lift-curve slope or CYBtail'

Wing.- The effects of compressibility on the subsonic stability
derivatives of the wing can be estimated by the formulas of reference 26.
The values of the supersonic stability derivatives for some wing plan
forms can be estimated by the references tabulated in table II. In this
table the derivatives are grouped sccording to the type of wing plan
form and to the particular derivatives covered. A helpful summary and
discussion of the effects of Mach number on the derivatives for several
different wing plan forms is presented in reference 103. A summary of
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the theoretical lift-curve slope, damping in roll, and center-of-
pressure characteristics of various wing plan forms is presented in
reference 107. In the cases in which the theory shows large or ebrupt
changes in a stability derivative with changes in Mach number (for
example, fig. 10 of reference 103) special care should be taken in
estimating the derivative in that particular Mech number range. The
abrupt changes should be smoothed or falred out in a manner similar to
that suggested in the followlng section for estimating CYﬁtail'

In some cases, experimental data for supersonic speeds will be
available on the sideslip derivatives and on the damping-in-roll deriva-
tive Cip. In such cases the experimental data should be used in pref-
erence to the theory. Some experimental results have indicated that the
effect of the verticel location of the wing on the fuselage on the
derivative CzB might be greatly different at supersonic speeds from

that at subsonic speeds. Since no methods are presently avellaeble for
estimating this effect for the supersonic case, 1t appears that, at
least in the case of high-wing and low-wing designs, force-test data
are necessary for obtaining an accureste estimate of Czﬁ.

Vertical taill.- The sideslip derivatives produced by the vertical
tail at transonic and supersonic speeds can be estimated theoretically
but should be obtained from force-test data whenever possible. These
sldeslip derivatives can be used to estimate the tall contributions to
the other derivetives as pointed out previously. In estimates of the
value of CYBtail for transonic and supersonic speeds, corrections mist

be made for the effect of Mach number on the lift-curve slope of the
tail, and these corrections should account for any differences in the
end-plate effect of the horizontal tail on the vertical tail.

For Mach numbers below sbout 0.8 or 0.9 and above about 1.6 or 1.8
the effect of Mach number on the lift-curve slope of the vertical taill
can be estimated satisfactorily from the theoretical values of refer-
ences 26, 34, and 107. Since experimental data indicate that theoreti-
cal values of lift-curve slope are usually too high for Mach numbers
from about 0.8 or 0.9 to about 1.6 or 1.8, the empirically determined
fairings shown in figure 1lh are recommended for use as a guide in the
use of the theory to obtain spproximste estimates in this Mach number
range when force-test data are not avilable.

Experimental dats have indicated thet for vertical-tail configura-
tions which have a tail length (distance from the center of gravity to
the tail center of pressure) that is relatively short in terms of tail
chords, the rearward shift of the tail center of pressure at supersonic
speeds can cause an apprecisble increase in the tail length and
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conseguently an appreclable increase in the magnltude of some of the
tail derivatives., Theoretical center-of-pressure positions for verious
plan forms at supersonic speeds are given in reference 107.

EFFECTS OF POWER

On the basis of existing informetion, the effects of power on the
lateral stability derivatives sppear to be negligible in the case of
Jet-propelled ailrplanes but these effects are often very large in the
case of single-engine propeller-driven airplanes. Methods are available
for estimating some of these power effects but in most cases experimental
date are necessary for making & satisfactory estimate. The effects of
power can be broken down Into two genersl classes:

(1) The effects of the lateral Fforce produced by the propeller
itself L o .

(2) The effects of the propeller slipstream on the wing, fuselage,
end verticel tail of the airplene

Effects of propeller lateral force.- A method of estimating the
propeller-lateral-force derivative CYB is presented in reference 31

which is based on the work of references 32 and 33. The contribution

of the propeller lateral force tco the other stability derivatives can

be estimated from this derivative by assuming that the propeller is
effectively a vertical taill surface and by using the expressions for

the taill contribution to the various derivatives presented in the
preceding sections. Some experimental dats on the effect of windmilling
propeller on all of the derivatives are presented in reference 65.

Effects of propeller slipstream.- The effects of propeller slip-
stream on the lateral-stabllity derivatives are usually much greater
thaen the effects of propeller lateral force in the case of single-engine
tractor airplanes. The slipstream effects on the wing, the fuselage,
and the vertical tall can be considered as three independent effects.

The slipstreem effects on the wing can usually be neglected except
for the derivatives CZB and Ci,. Experimental deta showing the

decrease in effective dihedral -CZB) with power for single-engine air-
planes are presented in references 54, 55, 56, T4, and 80. It appears
highly desirable to determine this effect of power experimentally

because interference effects make amccursteestimations of the effect
very difficult. The effect of the slipstream on the value of Czrwing

cannot be estimated from the date on CZBwing as described in the
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section on Ci,. 1In fact, this procedure would probebly give the wrong
sign for the increment of Clrwing contributed by the slipstream. An

approximation of this increment might be cbtained by estimating the slip-

stream velocity and the lateral displacement of the slipstream caused

by yawing. Usually the power effects on ClB and Ci, will be
wing wing

greatest for the flap-extended configuration.

In the case of the single-engine airplane the effect of the slip-
stream on the fuselage is usually to increase negatively the wvalues
of Cpg &nd Cyg. (See references 54, 55, 56, T1, T4, and T76.) Since

no accurate methods of estimating these slipstream effects on Cnﬁ I
and CYB are available, it is necessary to determine them from force-
test data. -

The effects of the slipstream on the vertical tail are often very
importent and should also be determined from experimental data, if
possible., The increase in dynamic pressure at the taill caused by the
slipstream is treated theoretically in reference 116 and is illustrated
by the experimental data of references 50, 54, 55, 56, 71, T4, and T6.
The experimental data of reference 76 also show that the propeller slip-
stream can ceuse a destabilizing sidewash at the tgail which will tend
to reduce the stabllizing effect of the increased dynamic pressure at
the tall. Since these data indicete that slipstream effects on the
vertical tall very greatly with airplane configuration and propeller
arrangement (single or dual rotation), use of experimental dats appears
to be the only satisfactory estimation procedure at present.

Suggested estimation procedure for power effects.- The following
procedure is suggested for estimating power effects. Obtain force-
test data for tail off and teil on. Use tail-on data directly for CYB,

Cnﬁ, and’ Czﬁ. Estimate rolling and yawlng derivatives as follows:

(1) Estimate CYBpropeller from_referepce 31 and use this deriva-

tive and proper linear dimensions to estimate other propeller deriva-
tives (rolling and yawing derivatives) in the same manner as tail
derivatives.

(2) Subtract tail-on data from tail-off data to get values of
Cyﬁtail’ CnBtail’ and Clﬁtail for the power-on condition and.gse

these values to estimate the tail contribution to the other derivatives.

(3) For tail-off values of rolling and yawing derivatives, use
same values as for power-off for all derivatives except Cj,.. Estimate

Ci1, as suggested in preceding section.
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(4) Add the values obtained in steps 1, 2, and 3 to get the
rolling and yawing derivatives for the complete airplane.

INADEQUACIES IN PRESENT INFORMATION AND METHODS

In the course of summarizing the estimstion methods for the various
stability derivatives, the need for much additionsl informstion on all
the derivatives became apparent. In particular, information is needed
to ald in the esgtimation of the derivatives in the transonic and super-
sonic speed ranges. Additional work also needs to be done in correlating
and analyzing existing subsonic data and in obtaining new experimental
dats for the development of semiempirical methods of estimating the sub-
sonic derivatives without resort to force-test data. Another important
need is for full-scale experilimental results at all speeds for checking
both low-a8cale data and the existing methods of estimating derivatives.
Details of the need for additional work along these lines are discussed
in the following sections. Studies should also be made to determine
the conditions for which the use of steady-state stability derivatives
in conventional stabllity equations is inadequate and to determine
satisfactory methods of treating such conditions.

Transonic and Supersonic Speeds

Additional theoretical work is needed on the estimation of sta-
bility derivatives in the transonic and supersonic speed ranges to
cover the range of wing plan forms for all the derivatives. In particu-
lar, more work is needed on plan forms currently under consideration,
such as wings having moderate sweepback and taper. This need is 1illus-
trated by table II which indicates that very little materiasl is gvailable
on the stability derivatives for such plan forms except, perhaps, for
the derivative Czp. It appears from the table that this derivative

and the triangular plan form have, in the past, received a dispropor- '
tionate share of attention, probably because of the greater ease with
which they could be treated theoretically.

The grestest need for work on stabllity derivatives at the present
time is probably in the measurement of the derivatives at transonic and
supersonic speeds. Experimental data on wings are urgently needed for
checking the theoretical work and for use in the development of empirical
corrections to the theory wherever necessary. Such corrections are
particularly needed for fairing out abrupt variations of the derlvetives
with Mach number and for fairing through the Mach number range for which
theory predicts infinite values. Examples of such discontinuities as
indicated by theory are shown in figures 8 to 13 of reference 103.
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Since experimental dsta obtained at supersonic speeds on wing-fuselage
combinations and on complete models have revealed interference effects
that are different from those obtained at subsonic speeds, it appears
highly desirable to obtain at least a limited amount of experimental ST
date &t transonic and supersonic speeds to evaluate these interference
effects. For example, investigations should be undertaken to determine
the effect of wing-fuselage Interference on the derivative CzB and

the end-plate effect of the horizontal tail on the lift-curve slope of
the vertical teil.

Most of the experlimental data on stability derivatives at transonic
and supersonic speeds will of necessiiy be obtained at Reynolds numbers
considerably less than full-scale values and under test conditions which
might render the results open to question in some cases. Full-scale ’
checks in flight of the low-scale data and of the estimation methods S
therefore appear to be desirable. Consequently the methods of measuring =
stebility derivatives in flight now being developed by the Cornell
Aeronautical Laboratory, the Massachusetts Institute of Technology, and
the NACA should be extended to transonic and supersonic speeds when the -
methods sppear to be developed to a satisfactory degree of reliablility
for the subsonic case. Some preliminary considerations involved in the
use of these flight techniques are discussed in references 117 to 120.

Subsonic Speeds

The methods presented in this paper for estimating the stability
derivatives at subsonic speeds depend elther directly or indirectly on
the use of force-test data. These methods are probably more reliable
than methods which do not involve the use of force-test data on the
particular design under consideration or on & similar design Methods
which do not rely on such data are desirable in some cases, however,
because the necessary data will not always be availsable, Tt

In the case of sideslip derivatives, empirical methods can probably
be developed largely from exlsting information. 1In some cases it will
be necessary to augment the existing informetion with new results since
much of the available force-test data were not obtained in a manner that
would meke the data readily usable for developing general estimstion
procedures.

In the case of rolling and yawlng derivatives, considerably less :
Information is available than in the case of the sideslip derivatives. C-
Most of the information now available was obtained in the Langley T
stability tunnel, principally on wing configurations and to a limited
extent on complete airplane models and sirplane components other than
the wing. Considerably more work is required, especially for components
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in combination, before satisfactory methods can be developed for
estimating rolling and yawing derlvatives without the use of force-test
data on the particular design under consideration or on a similar design.

In discussing the work necessary for developing new procedures for
estimating the stabllity derivatives without the use of force-test data
on the design under consideration or on & similar design, it is useful
to breask the problem down into two parts: (1) effect of individual
components and (2) the effect of interference of the components on each
other,

The principal components to be considered are the fuselage, wing,
vertlcal tail, and propeller. For the isolated fuselage, the main
problem is the development of methods for the estimation of CnB and

then, perhaps, of Cpn, and CYB' For the isolgted wing, the mailn

problem 1is to estimate the derivatives at 1ift coefficients gbove that

at which separetion begins. BSuch estimations can be made with reasoneble
accuracy for some of the derilvatives by existing methods which mske use
of force-test data, but the development of methods which dc not involve
the use of force-test data will probsbly be very difficult. For the
isolated vertical tail, the problem 1s to establish the effective tail
eree and aspect ratio from the geometry of the tall so that-the 1lift-
curve slope @r CYB) of the tall can be calculated. Solutions to this

seenmingly simple problem have in the past become involved with interfer-
ence effects so that, as yet, no reliable methods have been published
for estimating CYB of the verticael taill from its geometry. For the

1soclated propellers, the work that is needed at present is a systematic
check of exlsting methods of estimating the lateral force on the
propeller to determine the accuracy of these methods.

The principal interference effects to be considered are mutual
interference of the wing and fuselage; wing-fuselsasge interference on
the verticel taill; horizontal-tail interference on the vertical taill;
propeller-slipstream interference on the wing, fuselage, and vertical
taill. The mutual-interference effects of the wing and fuselage are
probably important only for the derivatives CzB, Cnﬂ: and Czr. A

large amount of experimental data is available for the sideslip deriva-
tdves but no procedures for estimaeting the interference effects on these
derivatives have been reported. Wing-fuselage interference has very
important effects on CYB of the vertical tail, and consequently on all

of the stebllity derivatives for some flight conditions. These effects
result from the sidewash and change in dynamlc pressure at the tall
which may result from sidesl}ipping, rolling, or yawing. Although con-
siderable data which show these interference effects are available,
particularly for the casé¢ of sideslipping, no reliable methods exist
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for estimating the interference effects. Horizontal-tall interference
elso has en importent effect on Cyg of the vertical tail for somé™

horizontal-tail positions. Some work on a limited number of configura-
tions has been done toward developing methods of estimeting this effect
but data are required on more configurations before the generally sppli-
cable methods can be evolved. The propeller slipstream can ceusé impor-.
tant effects on CZB and Ci, of the wing, on Cnﬁ and CYB of the

fuselage, and on Cy of the teil (and consequently on the tail contri- -
bution to all the derivatives). Some data are available for the effect
of the slipstream on the sideslip derlvatives but, because of the com-
plexity of this problem, considerable additional datae may be required
before = satisfactory method of estimating the slipstream effects can
be developed. N

As mentioned in the preceding section, full-scale checks of low-
scale dats and of the estimgtion methods are desirable. For the sub-
sonic case some of the checks can be obtained from large-scale wind-
tunnel tests but some checks in full-scale flight tests should also be
obt~ined when the various methods of measuring stability derivatives in
fli, nt have been developed to a satisfactory degree of accuracy.

Langley Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December 13, 1950

He



54 NACA TN 2409

APPENDIX A
EQUATIONS OF MOTION

The dimensional equations for the lateral motions of an airplane

are
2 ’ 2 é

04 L a a% d av AL _
miky ;-Eg-gﬁa%+mkngb—§-g;a_—t--gv-llc—o (A1)

acg N ag 2y _Wav 3w -
mexz w2 T pat T2 2 Sra Tov "N =0 (42)
-%%%-(Lift)¢+mvg—g—g%g—-g-(Lift)(ta.ny)W+m-%—%$—v-Yc=O
(A3)

If equations (Al) and (A2) are divided by %pVQSb and equation (A3) is
divided by EpVES the equations of motion may be expressed in the con-

2
ventional nondimensional form in which they have generally been presented
in NACA reports (for example, see reference 2): -

2 ™~
244 1. _ag ay 1. a
2Ky o 5%y ds Tz ;5 -5 Ciras " %P " Cre =0

2 2 : CT
&g 1 ag 2edy 1 &y -
2nKyz, ag2 - 2 Cnp ds * 21Kz as? 2 Cnp 3s - CHBB = Cp =0 F, (Ak)
L ag a1 av as
= ) CYP ds = CL¢ + 2“- ds ) CYr dse = CL(tan 7)'4‘ + 2“- ds =
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In order to convert these equetions into a form which will reduce the
nunber of arithmetical and algebraic steps in performing stability cal-
culations, equations (A4) are multiplied by m/pSb and written in the
following form:

(D‘?‘ - zpn>¢ + (K1D2 - ZrD)\lr - 1B - g =0

]
B
W
o
]
B
1l
o

(K2D2 - DPD)¢ * (D2 - nrD)‘l' c (85)

(—pr -%—)¢+(D - ¥eP -%tan7)ﬂr+ (D -yB)B_-yc=0

where
_.n .o -t -3
B = 35b T = o8V o=7 D=%
Kxz Kxz.
=7 k2 =% 2
Kx Kz,
1
la = =3¢ ng = 45 C ya == C
B 2KX2 g B 2Kza ng B~ 2
d
1 1 1
I, =——=C =—=C = 7 C
1 M Y
P k2 P op 2 °P iR TG 4%
1 1 1
iy =—5C1 np = —75 Cp yr = Cy.
T T w2 T T T
lo =50, me=—pCa  Ye=5C%
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APPENDIX B
APPLICATION OF THE LAPLACE TRANSFORMATION TO CALCULATING MOTIONS

The application of the Laplace transformstion to the calculation
of the lateral motions of alrplanes is presented in order to illustrate
the development of the equations of motion in the form in which they
are presented in the present pgper. This work is similar to that—rpre-
sented in references 5 and 6. In fact, it follows the presentation in
reference 5 very closely. Reference 6 presents & brief explanation of
the Laplace transformstion and its applicetion to solution of the equa-
tions of motion of an airplane. This paper also makes reference to
detailed explanations of the Laplace transformation. In cases where
modification of the equations presented Iin the present paper are neces-
sary, reference should be made to these texts for an understanding of
the mathematics involved. Applying the Laplace transforms

-Xl- L(Dg) = Ay - Fo
f  L(PP) =23, - gy - (DF),

L{1)

L(#)

and multiplying each of the equations by A\ transforms equations (A5)
from appendix A to :

<>V3 - o )¢>“ * (Kl)“3 - erz) ¥y = A8y, ~

1

e | > (BL)

(K2x3 - npxe) g, + '(x3 - nrxz)h - nghBy,

C c
(22 - 2 2)th + E“e - ¥® - Ftan 7”'“‘% - (2 - ) = x5
7

where

rp = (A2 - 1080 + (K1A2 - 1AWg + MDB)g + KpA(D¥)g + 2o

ro = (k2A2 - npA)fo + (A2 = npA)¥o + KoM(DF)o + AM(D¥)o + ne

r3 = ~ypMo + (A - ypAlo + ABg - ¥
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Solving equations (Bl) by determinants gives

-1gh 1 K13 - 1pA2
-nBX To x3 - nrxe
2 2 2 Cg
g _ AT - ygr r3 AT - YT - Er(tan_y}}
) W - -
-1gh A3 - 1pf kA3 - 1,22
Y KA3 = n A8 : A3 S na?
B 2 P T
. c c
2 _ w2 _ L 2 2 _ L
N yah yph 5 M AT - YA 2(tan 7

which may be expressed as

¢L - aox5 + alkh + a2x3 + a3x2 + gy + as

(32)_
x2(Axl‘ + B3 + A%+ Dy + E)
Similarly, the expressions for *x and BX are
bA + bt + boA3 + bA2 + B + by
w)\. = 2 Iy 3 2] (B3)
A (AX + BA” + CA™ + DA + E)
cokh + clx3 + CEXE + c3k +cy
By, = (Bk)

X(A}\.l" + B3 + CA2 + DA+ E)

vhere the expressions for the coefficients in equations (B2) to (BL) are
given in terms of the mass and aerodynamic stabllity derivatives by
equations (1) to (4) in the main body of this paper.

In order to obtain the actuel variables from the transformed
veriebles, an inverse Laplace transformation must be applied. The
expressions for ¢k’ ¥y, and By are of the form ux/vx where u,
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and v, are polynomlals, the degree of v, being higher then that
of u). The inverse transform of a function of this type is

=1y u(ry) o
. (‘ﬁ)nf{m : (85)

In this equation all of the roots A of v, =0 are assumed to be
distinct. This assumption is valid for B,; but for @, and V¥,

= O hes two zero roots. (See equations (B2), (B3), and (B4).) The
terms in the equations for @ and ¥ resulting from the two'zero roots
are

an
dd(o) + Q(0)o (B6)
where
u
Q=22
Va

The inverse transforms of @, V¥, and B, are from equations (B5)
and (B6)

B = Are™™ + 8672 1 23”3 4 a4 Age + ag (57)
¥ = Blecxl + BEeUXQ + BanX3 + BheGML + Bso + Bg (B8)
B = Clecml +~02ecr>\'2 + C3eck3 + Cuecxh + C5 (B9)

The equations for the rolling velocity p and the yawing velocity r
can be obtained from equations (B7) and (B8) by differentistion

P = %(Alkleckl + AgkeeUXQ + A3k3eck3 + Ahxhegxh + A5) (BLO)

1

;Cplxle°xl + Byrge” 2 4 Barge™3 4 By 4 B?) (B11)

where the expressions for the coefficients of equations (B7) to (Bll)
are given by equations (6) to (8) in the section "Calculation of Motions."
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APPENDIX C
SOLUTION OF BIQUADRATIC EQUATION

Meny methods sre avallable, of course, for solving for the roots
of a blquadratic equation. For example, there are Horner's, Ferrari's,
Bernoulli's, Descartes', and Hitchcock's methods; various methods of
solution by trial; and also vaerious graphical methods such as that
given 1n reference 1. Solution by trial in which synthetic division is
used, however, is recommended as being the simplest method for most
lateral stability work. The characteristic equation for the laterel
motions of an airplane

i3+ iDL+ E=o0

generally has two real roots and a pair of conjugate complex roots. For
these cases the two real roots can be factored out easily and the
remaining quadratic solved for the conjugate complex roots. In the few
cases for which all four of the roots of the characteristic equation
are complex, Descartes' method can be used to factor the biquadratic
equation into two quadratics. When there are real roots, solution by
Descartes' method requires more time than factoring out the real roots
singly and consequently is not recommended for general use, These
methods of solution are explained in the following sections. '

Solution by Trial by Means of Synthetic Division

Solution for real roots by trial by means of synthetic division
consists of successive approximations of a root and checking by synthetic
division until the root is determined to the desired degree of accuracy.
This check by synthetlc division is based on the fact that if a is a
root of a polynomial f(x) then x - a 1is a factor of f(x) and con-
sequently no remsinder is left when £(x) i1s divided by x - a.

The method of solving the stability biquadratic equation by ‘trial
with synthetic division is explained in three steps in the following
sections. First, the rule for synthetic division and a numerical
example are given. Second, the specific use of synthetic division for
factoring a biguadratic is illustrated by a simplified example for
which the roots are known. This example shows how the cubic and then
the gquadratic factors of the biquadratic are obtained. Third, the use
of synthetic division in extracting the roote of & representative
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characteristic stability biguadratic 1s illustrated with specisal refer-
ence to methods of meking the first approximations of the real roots.

Explanation of synthetic division.- Synthetic division is explained
in almost all algebra text boocks but 1s presented herein for the con-
venience of the reader. The rule for synthetlc division may be given
ag follows:

Assume that a polynomial in -x (f(x)) is to be divided by x - a;
write the coefficients of the polynomial in order, supplying O vwhen
a coefficilent is lacking.

Multiply a by the first coefficient; and add (algebraically) the
product to the next coefficient.

Multiply this sum by a, add to the next coefficient, and proceed
until all the coefficients are used. The last sum is the remainder and
also the value of the polynomial when a 1s substituted for the
variable x.

For example, divide xl‘L + 3x3 + 3x2 - x -6 by x - 3.

1+3+ 3-1- 6

+ 3 + 18 + 63 + 186 |3
1 +6+21 + 62 + 180

Use of synthetic division in factoring out roots.- The use of
synthetic division to factor out two known rational roots of & biquadratic
equation is illustrated by the following simple example. These two
rational roots represent the two real roots of the characteristic sta-
bility equation which, of course, are not normally known but can be
approximated by the method given in the next section of this paper.

One factor of the biquadratic 1s x - 1 so there is no remainder
when the biquadretic 1s divided by the root 1

1+3+3~-1-6

+1+4+7+6
1+4+7T+6 O

Since the remainder is O, x - 1 1is one factor of the biquadratic

equation and x3 + bx® 4 7x + 6 1s asnother factor. Inaémﬁbh as a
cubic equation must have at least one real root, a second real root of
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the biquadratic equation can be factored out of the cubic. For
example X + 2 1is a factor so divide the cubic by the root -2.

L+'h+7+6

-2-4_6 |-2
1 +2 + 3 0

The factors of the biquadratic then are x - 1, x + 2, and x° + 2x + 3.
The quadratic factor cen be solved for its roots by the quadratic

formula. For example

w=2ENY-12 e

2

Example of application to characteristic equation.- Reasonably
accurate first approximstions to the real roots of the characteristic
equation can be obtained from simple formulas. Succeassively closer
approximetions cen then be obtalned by interpolating from the remainders.
The following example illustrates the application of this method %o
obtaining the roots of the stability biquadretic. The bilguadratic

A £ 10,4303 + 16.3202 + 68.6M - 9.10 = O
is of the form

o em3io® e+ E =0

Since the coefficlent E 1s generally much smaller than coefficient D
in lsteral stability work, one of the real roots (usually the smeller

of the two) is approximately equel to -E/D or it may be more closely
approximated by the equation - -

or for the particular case

-9.10 - 0.129
(16.32)(-9.10) ~ ~°
68.6 - Z8.C

A= -
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Approximaeting the root by synthetic division

1+ 10.43 + 16.32 + 68,6 - 9.10 Approximation
+ A3+ 1.36 + 2.3 + 9.10 .128k 2
+ .13+ 1.36 +- 2.3 + 9.14 |.129 1

1+ 10.56 + 17.68 + 70.9 + .0k 1

1 + 10.56 + 17.68 + 70.9 + O 2

+

For this root, the second approximation was determined by dividing the
coefficient E by the fourth sum from the quotilent

_ =9.10
70.9

This procedure generally provides a good second gpproximation for the
small real root.

The cubic equation obtained by setting
3 2 :
A° + 10.56A° + 17.68\ + T70.9
equal to zero is of the form
ad3 + A2 + A +d =0

In most lateral-stabllity work, a real root of this equatlion will be
approximately equal to ~b or it may be more closely approximated by
the equation : o T

b3 + d

b2 + cC

A= -

or for the particular case

_ (20.56)° + 70.9

A= 5
(10.56)° + 17.68

= -9.65
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Approximating the root by syunthetic division

1+ 10.56 + 17.68 + T70.9 Approximation
- 9.48 - 10.20 - 70.9 | -9.485 6
- 9.49 - 10.16 - TL.k | -9.k9 5
- 9.48 - 10.25 - T0.4 | -9.48 4
- 9.45 - 10.50 - 67.9 | -9.45 3
- 9.55 - 9.6k - 76.8] -9.55 2
- 9.5 - 8.78 -85.9 | -9.65 1
I+ 0.91 + 8.90 - 15.0 1
1+ 1.0l + 8.0k - 5.9 2
1+ 1.11 + T7.18 + 3.0 3
1+ 1.08+ T.43+ 0.5 y
1+ 1.07T + T.52 - 0.5 5
1+ 1.075 + T.48 0 6

63

For this large real root there is no simple method of determining the
second approximation as there was in the case of the smaller real root,.
The magnitude of the estimated root in this case is arbitrarily

increased or decreased slightly from the first approximation.

From the

remainders determined from the first two approximations, a falrly close

third approximation can then be made.

Factoring the quadratic equation obtained by setting

.

X2

+ 1.075™ + T.48

equal to zero by use of the quadratic formule gives the final two roots
of the biquadratic equation.

1.075 i\Jl.l6 - 29.92

2

-0.538 £ 1 géﬁzé

~0.538 £ 2.681
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The roots of the biquadratic equation may be checked by multiplying
the four factors to determine whether their product equals the original
biguadratic - : : :

(A - 0.1284) (A + 9.485)(n + 0.538 + 2.681)(A + 0.538 -.2.681) = (AZ + 9.U5Th -

1.220)(A2 + 1.07n + T.47) = A% + 10.4303 + 16.3202 + 68.6) - 9.10

Solution by Descartes' Method
Descartes' method of solving a biquadratic equation is particularly
useful for solving equations which do not have any real roots. This
method is explained in most text books on advanced algebra and theory of
equations. In general, the method consists of reducing the blquadratic
equation to & cubic equation which can be solved easily. One root of

the cubic equation 1s used to form two quadratic equations the roots of
which are used to obtain the roots of the bilquadratic equation.

Method.- Reduce the general biquadratic equation

w3+ e +E=0

to the form
M i3+ 2+ dr +e =0

by dividing by A.

Obtain the wvalues of q, r, end s from the followling equationsﬁ
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and form the equation

x6+12'-qx)++(%6q_2-%s)x2-glﬂr2=0

and solve this cubic equation in ¥° for one of its roots x° # 0.
Solution by trial by means of synthetic division is recommended.
Determine the values of 1 and m from the equagtion

- a 2_1'
1 2+?x E}-C-

q 2 T .
2+2x +E§

B
L]

Substitute the values of 1 and m and the value of x used in
obtaining 1 and m in the equations : ’

Il
(@)

2
¥y +2xy + 1

y2 -2y +m=20
and solve these quadratic equations for their roots y from which the

roots of the biquadratic equation may be obtained frdm the following
relation: '

b
)\.=y-E



AFPERDIX D

SPECTIAL NOTATION USED IN CALCULATING MOTIONS WHEN
THE CHARACTERISTIC EQUATIOR HAS COMPLEX ROCTS
When two of the roots A} and Ao are conjugate complex, the coefficients A3 and Ap,

B] and Bp, C1 and Co will be conjugate complex. If R + Ii is one of the roots A1 and
if the powers of Ay are expressed as

ME = Ry + Tl
then
ll = Rl + Ili

2
ll =R2+Iei

3

?..ll'l =Ry + I)1
l = R + 151
Substitution of the root R + Ii in the expression for A; gives

(a0R5 + ajR) + 5'233 + a3H2 + ayRy + 5.5) + (a.015 + a1 D) + a213 + 3312 + a.hIl)i
(6AR5 + SER) + WCRg + 3DRp + EERl) + [6AT5 + 5BI) + KCI3 + 3DIp + 2EL;)d

A =

The division of these complex mumbers is indicated by the equation

99

6oz NI VOVN




1+l XX+ Ve X1 - 0¥o

= i
Xn + ¥pl 122 + y22 x22 + y22

6072 KT VOVN

Tt is evident from these relations that A1 is a complex mmber. In this case new symbols are
uged to represent the real and imaginary perts of A; as follows:

Ay =Ry + Ipi

Ay ig the conjugate of A and will be referred to as
Ap, =Ry - Ipl

By procedures similar to those for the A coefficients,

b - (boRs + bRy, + DoBg + byRp + DRy bg) + (bls + Byl + bpls + balp + byl i
(6ams + 5ERy, + UcRg + 3R, + ZERy) + (6AI5+5BIh+lI-CI3+3D12+2EI])i

which may be referred tc as

By = Ry + Ipt

Bo =Ry - Igl
Als0,

¢y = (cOR5 + ¢ Ry + c2R3 + c3112 + cl|_lRl) + (001'5 + eqIy + c213 + cglp + ChIl)i
(6aRs5 + 5HRy, + 4CR3 + 3DRy + ZERy) + (6ALs + 5BI) + CI3 + 3DIp + PET) )1

which may be referred to &as

L9
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Cp =Rg + Ipl

C2=RC-Ici

Similar analysis shows that, if the roots A.3- and \) are also conjugate complex guantities
(b3 =R' + I'1 and Ay =R' - I'1), then

A3 = RIA + ITAi

md .
Ay =Ry =171
whére . .
o= (aOR'5 + eaqR) + a2R'3__+ a3R'2 + R’y + a.5) + (a01'5 + a1y + 321'3 + a.3I'2 + ahI'l)i
3 (6AR‘5 + SBR') + WCR'g + 3IR"p + EER'lJ + IBAI'5 + 5BI') + ¥CI'g + 3DI'p + ZEI'l)i
Also,
133 = RfB + I‘Bi
and

=R' _ Tt 4
Bk"RB IBl
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where

s (bgR's + DR’} + boR'3 + BaR'p + DIR'y + bs) + (bgI's + yI'y + Bol's + byT'p + byI" )i
37 (6AR'5 + SER') + ACR'3 + 3DR'p + 2ER'1) + (6AI's + 5BI') + ICI'3 + DI’y + EI' )1
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Similarly,

C3 = RIC + I'ci
and

Ch' = R'C - Iici
where

(coR's + cqRY) + coR'3 + cqRip + C'uR.'l) + (c01'5 +cqI')y + cpl'y + cglip + CLI'],)i
(6AR'5 + 5BR'), + UCR'3 + 3DR'p + 2ER'1) (BAT's + SBL') + kCT'g + 301'p + 2EI')4

C3=

69




70

10.

11.

12.

NACA TN 2409
REFERENCES

Zimmermen, Charles H.: An Analysis of Latersl Stability in Power-
Off Flight with Charts for Use in Design. NACA Rep. 589, 1937.

. Sternfield, Leonard: Effect of Product of Inertia on Lateral

Stebility. NACA TN 1193, 1947.

McKinney, Marion O., Jr., and Drake, Hubert M.: Correlation of
Experimental and Calchlated Effects of Product of Inertia on
Lateral Stability. NACA TN 1370, 1947.

Jones, Robert T.: A Simplified Application of the Method of
Operators to the Calculation of Disturbed Motilons of an Airplane.

NACA Rep. 560, 1936.

Murfay, Harry E., and Grant, Frederick C.: Method of Calculating the
Latersl Motions of Aircraft Based on the Laplace Transform. NACA
™ 2129, 1950.

Mokrzyckl, G. A. Application of the Laplace Transformation to the
Solution of the Latersal and Longitudinal Stabillty Equations. NACA
TN 2002, 1950.

Jones, Robert T.: Calculation of the Motion of an Airpléne under
the Influence of Irregular Disturbances. dJour. Aero. Sci., vol. 3,
no. 12, Oct. 1936, pp. 4lg9-425,

Sternfield, Leonard, and Gates, Ordway B., Jr.: A Method of Calcu-
lating a Stability Boundary that Defines a Region of Satisfactory
Period-Damping Relationship of the Oscillatory Mode of Motion.
NACA TN 1859, 1949.

. Brown, W. S.: A Simple Method of Constructing Stability Diagrams.

R. & M. No. 1905, British A.R.C., 1942,

Schy, Albert A.: A Theoretical Analysis of the Effects of Fuel
Motion on Airplane Dynamics. NACA TN 2280, 1951 -

Sternfield, Leonard: Some Effects of Nonlinear Variation in the
Directional-Stabllity snd Damping-in-Yawing Derivatives on the
Lateral Stability of an Airplsne. NACA TN 2233, 1950. ’

Greenberg, Harry: Frequency-Response Method for Determination’of
Dynemic Stability Characteristics of Airplanes with Automatic
Controls. NACA Rep. 882, 1947. (Formerly NACA TN 1229.)



»

NACA TN 2409 ‘ TL

13.

1k,

15.

16.

17.

18.

19.

20.

21,

22.

23.

2L,

Sternfield, Leonard, and Gates, Crdway B., Jr.: A Theoretical
Anelysis of the Effect of Time Lag in an Automatic Stabilization
System on the Lateral Oscillatory Stability of an Airplane. NACA
TN 2005, 1950.

Jones, Arthur L., and Briggs, Benjamin R.: A Survey of Stabillty
Analysis Techniques for Automatically Controlled Aircraft. NACA
™ 2275, 1951.

Getes, Ordway B., Jr., and Schy, Albert A.: A Theoretical Method of
Determining the Control Gearing and Time Lag Necessary for a
Specified Damping of an Aircraft Equipped with a Constant-Time-lLag
Autopilot. NACA TN 2307, 1951.

McKinney, Marion 0., Jr., end Masggin, Bernard: Experimental Verifi-
cation of the Rudder-Free Stebllity Theory for an Alrplane Model
Equipped with Rudders Having Negatlve Floating Tendency and
Negligible Friction. NACA ARR LLJ0Sa, 19kl

Greenberg, Harry, and Sternfield, Leonard: A Theoretical Investiga-
tion of the Lateral Oscillations of an Airplene with Free Rudder
with Special Reference to the Effect of Friction. NACA Rep. 762,
1943. (Formerly NACA ARR, March 1943.)

Cohen, Doris: A Theoretical Investigation of the Rolliing Oscilla-
tions of an Airplane with Ailerons Free. NACA Rep. 787, 194k.
(Formerly NACA ARR LAO6.)

Sternfield, Ieonard: Effect of Automatic Stabilization on the
Lateral Oscillatory Stability of a Hypothetical Airplane at
Supersonic Speeds. NACA TN 1818, 1949.

Routh, Edward John: Dynamics of a System of Rigid Bodies. Part I. -
Eighth ed., MacMillen and Co., Ltd., 1913. (Reprinted 1930.)

Hunsgker, J. C., and Wilson, E. B.: Report on Behavior of Aeroplenes
in Gusts. NACA Rep. 1, 1915.

Wilson, Edwin Bidwell: Theory of an Airplane Encountering Gusts.
Part II. NACA Rep. 21, 1917. Part III. NACA Rep. 27, 1918.

Mazelsky, Barnard, and Diederich, Franklin W.: Two Matrix Methods
for Calculating Forcing Functions from Known Responses. NACA
TN 1965, 1949, - T

Sternfield, Leonard, and Gates, Ordwey B., Jr.: A Simplified Method
for the Determination and Anelysis of the Neutral.-Lateral- T
Oscillatory-Stability Boundary. NACA Rep. 943, 1949. (Formerly
NACA TN 1727.)



72

25,

26.

7.

28.

29.

30.

31.

32,

33.

3k,

3>.

36.

NACA TN 2409

Toll, Thomas A., and Queijo, M. J.: Approximate Relationé and
Charts for Low-Speed Stability Derivaetives of Swept Wings. NACA
TN 1581, 1948.

Fisher, Lewis R.: Approximate Corrections for the Effects of Com-
pressibility on the Subsonic Stability Derivatives of Swept Wings.
NACA TN 185k, 19kg.

Katzoff, S., and Mutterperl, William: The End-Plate Effect of =
Horizontal-Tall Surface on a Vertical-Tail Surface. NACA
TN 797, 1941.

Murray, Harry E.: Wind-Tunnel Investigation of End-Plate Effects
of Horizontal Tails on a Vertical Teil Compared with Available
Theory. NACA TN 1050, 1946.

Shortal, Joseph A.: Effect of Tip Shape and Dihedral on Lateral-
Stability Characteristics. NACA Rep. 548, 1935. :

Purser, Paul E., and Campbell, John P,: Experimental Verification
of a Simplified Vee-Tail Theory and Analysis of Available Data
on Complete Models with Vee Tails. NACA Rep. 823, 1945.
(Formerly NACA ACR L5A03.)

Ribner, Herbert S.: Notes on the Propeller and Slipstream in
Relation to Stability. NACA ARR LL4I1Pa, 19hkL,

Ribner, Herbert S.: Formulas for Propellers in Yaw and Charts of
the Side-Force Derivative. NACA Rep. 819, 1945. (Formerly
NACA ARR 3E19.)

Ribner, Herbert S.: Propellers in Ysw. NACA Rep. 820, 1945,
(Formerly NACA ARR 3109.)

DeYoung, John: Theoretical Additional Span ILoading Characteristics
of Wings with Arbitrary Sweep, Aspect Ratio, and Taper Ratio.
NACA TN 1491, 1947. (Also included in NACA Rep. 921, 1948.)

Brewer, Jack D., and Lichtenstein, Jacob H. Effect of Horilzontael
Tall on Low-Speed Static Lateral Stability Characteristics of a
Model Heving 45° Sweptback Wing and Tail Surfaces. NACA TN 2010,
1950.

Micheel, William H., Jr.: Analysis of the Effects of Wing Inter-
Terence on the Tall Contributions to the Rolling Derivatives.
NACA TN 2332, 1951.



NacA TN 2hk09

37.

38.

39.

by,

ko,

43.

Lk,

b5,

Bamber, M. J., and House, R. O.: Wind-Tunnel Investigation of
Effect of Yaw on Lateral-Stability Characteristics. I - Four
N.A.C.A. 23012 Wings of Various Plan Forms with and without
Dihedral. NACA TN TO3, 1939.

Bamber, M. J., and House, R. O0.: Wind-Tunnel Investigation of
Effect of Yaw on Leteral-Stabllity Characteristics. II -
Rectangular N.A.C.A, 23012 Wing with a Circular Fuselage and a
Fin. NACA TN 730, 1939.

House, Rufus 0., and Wallace, Arthur R.: Wind-Tunnel Investigation
of Effect of Interference on Lateral-Stability Characteristics of
Four NACA 23012 Wings, an Elliptical and a Circular Fuselage, end
Vertical Fins. NACA Rep. T05, 19kl.

. Recant, Isidore G., and Wallace, Arthur R.: Wind-Tunnel Investiga-

tion of Effect of Yaw on Lateral-Stability Characteristics.
III - Symmetrically Tapered Wing at Various Positions on Circular
Fuselage with and without & Vertical Tail. NACA TN 825, 194l.

Recant, I. G., and Wallace, Arthur R.: Wind-Tunnel Investigation
of Effect of Yaw on Lateral-Stability Characteristics.
- Symmetrically Tapered Wing with a Circular Fuselage Having
a Wedge-Shaped.Rear and a Vertical Tail. NACA ARR, March 1942,

Wallace, Arthur R., and Turner, Thomes R.: Wind-Tunnel Investiga-
tion of Effect of Yaw on Lateral-Stability Characteristics.
V - Symmetrically Tapered Wing with a Circular Fuselage Having a
Horizontel and a Vertical Tail. NACA ARR 3F23, 1943.

Teplitz, Jerome: Effects of Small Angles of Sweep and Moderste
Amounts of Dihedral on Stalling and Lateral Characteristics of
a Wing-Fuselage Combination Equipped with Partial- and Full-Span
Double Slotted Flaps. NACA Rep. 800, 194k, (Formerly NACA
ACR TkE20.) :

Hollingworth, Thomas A.: Investigation of Effect of Sideslip on
Lateral Stability Characteristics. II - Rectangulsr Midwing on
Circuler Fuselage with Variations in Vertical-Tail Areas and
Fuselage Length with and without Horizontal Tail Surface.

NACA ARR L5C13, 19i45.

Hollingworth, Thomas A.: Investigation of Effect of Sideslip on
Lateral Stability Characteristics. III - Rectangular Low Wing
on Circular Fuselage with Variastions in Vertical-Tail Ares and
Fuselage Length with and without Horizontal Tail Surface.

NACA ARR L5Cl3a, 1945,



=

L6.

h7.

%9,

50.

51.

52.

23.

Sk.

>5.

56.

NACA TN 2409

Fehlner, Leo F., and MacLachlan, Robért: Investigation of Effect
of Sideslip on Lateral Stability Characteristics. I - Circular
Fuselage with Variations in Vertical-Tail Area and Tail Length
with and without Horizontal Tail Surface. NACA ARR LLE25,
194k,

Hoggerd, H. Page, Jr.: Wind-Tunnel Investigation of Fuselage
Stability in Yaw with Various Arrangements of Fins. NACA TN 785,
1940.

Donlan, C. J., and Letko, W.: The Effect of Cowling Shape on the
Stability Characteristics of an Airplane. NACA ARR, Sept. 1942.

Recant, Isidore G., and Wallace, Arthur R.: Wind-Tunnel Investiga;
tion of the Effect of Vertical Postion of the Wing on the Side
Flow in the Region of the Vertical Tail. NACA TN 80k, 1941,

Neely, R. H., Fogarty, L. E., and Alexander, S. R.: Comparison-of
Yaw Characteristics of a Single-Engine Airplane Model with Single-
Rotating and Dual-Rotating Propellers. NACA ACR L4D19, 19ik,

Maggin, Bernard, and Shanks, Robert E. The Effect of Geometric
Dihedral on the Aerodynemic Characteristics of a 40° Swept-Back
Wing of Aspect Ratio 3. NACA TN 1169, 19L6.

Stuper, J.: Effect of Propeller Slipstream on Wing and Tail.
NACA TM 874, 1938.

Rogallo, Francis M., and Swanson, Robert S.: Wind-Tunnel Tests of a
Twin-Englne Model to Determine the Effect of Direction of Propeller
Rotation on the Static-Stability Characteristics NACA ARR,

Jan. 1943,

Tamburello, Vito, and Weil, Joseph: Wind-Tunnel Investigation of
the Effect of Power and Flaps on the Static Latersl Characteristics
of a Single-Engine Low-Wing Airplane Model. NACA TN 1327, 194T7.

Hegermen, John R.: Wind-Tunnel Investigation of the Effect of Power
and Flaps on the Static Lateral Stability and Control Character-
isﬁics of a Single-Engine High-Wing Airplane Model. NACA TN 1379,
1947

Purser, Paul E., and Spear, Margaret F.: Tests to Determine Effects
of Slipstream Rotation on the Lateral Stebility Characteristics
of a Single-Engine Low-Wing Airplene Model. NACA TN 1146, 1946,



NACA TN 2L409 75_

57. Tosti, Louis P.: Low-Speed Static Stability end Damping-in-Roll
Characteristics of Some Swept and Unswept Low-Aspect-Ratio Wings.
NACA TN 1468, 1947,

58. Queljo, M. J., and Jaquet, Byron M. Investigation of Effects of
Geometric Dihedral on Low-Speed Static Stability and Yawing
Characteristics of an Untapered h5 Sweptback-Wing Model of Aspect
Ratio 2.61. NACA TN 1668, 1948. T

59. Goodman, Alex, and Brewer, Jack D.: Investigation al Low Speeds of
the Effect of Aspect Ratlo and Sweep on Static and Yawing
Stebility Derivatives of Untapered Wings. NACA TN 1669, 1948.

60. Letko, William, and Cowan, John W.: Effect of Taper Ratio on Low-
Speed Static and Yawing Stability Derivatives of 45° Sweptback
Wings with Aspect Ratio of 2.61, NACA TN 1671, 1948.

61. Schade, Robert O. Effect of Geometric Dihedral on the Aerodynamic
Characteristics of Two Isolated Vee-Tail Surfaces. NACA TN 1369,

1947,

62. Polhamus, Edward C., and Moss, Robert J.: Wind-Tunnel Investigation
of the Stability and Control Characteristics of a Complete Model
Equipped with a Vee Tail. NACA TN 1478, 19LT.

63. Letko, William, and Goodman, Alex: Preliminary Wind-Tunnel Investi-
gation at Low Speed of Stability and Control Characteristics of
Swept-Back Wings. NACA TN 1046, 1946,

6k. Lockwood, Vernard E., and Watson, James M.: Stability and Control
Characteristics at Low Speed of an Airplane Model Having a 38.7°
Sweptback Wing with Aspect Ratio L4.51, Taper Ratic 0.54, and
Conventionel Tail Surfaces. NACA TN 1742 19L48.

65. Bird, John D., and Jaguet, Byron M.: A Study of the Use of Experi-
mental Stablility Derivatives in the Calculation of the Lateral
Disturbed Motions of a Swept-Wing Alrplane and Comparison with
Flight Results. NACA TN 2013, 1950.

66. Pearson, Henry A., and Jones, Robert T.: Theoretical Stability and
Control Characteristics of Wings with Various Amounts of Taper
and Twist. NACA Rep. 635, 1938.

67. Multhopp, H.: Aerodynamics of the Fuselage. NACA TM 1036, 19k2,

68. Imlay, Frederick H.: The Estimation of the Rate of Change of
Yawing Moment with Sideslip. NACA TN 636, 1938.



76

69.

TO.

T1.

T2.

73.

.

.

76.

78.

19.

NACA TN 2409

Pass, H. R.: Analysig of Wind-Tunnel Data on Directional Stability
and Control. NACA TN 775, 19k0.

Garbell, Maurice A.: Theoretical Principles of Wing-Tip Fins for
Tallless Ailrplsnes and their Practical Application. Jour. Aero.
Sci., vol. 13, no. 10, Oct. 1946, pp. 525-536.

Shortel, Joseph A., and Draper, John W.: Free-Flight-Tunnel
Investigation of the Effect of the Fuselage Length and the Aspect
Ratlio and Size of the Vertical Tail on Lateral Stability and
Control. NACA ARR 3D17, 1943. '

Bishop, Robert C., and Lomax, Harvard: A Simplified Method for
Determining from Flight Data the Rate of Change of Yawing-Moment
Coefficient with Sideslip. NACA TN 1076, 1946.

MacLachlan, Robert, and Levitt, Joseph: Wind-Tunnel Investigation
of Effect of Canopies on Directlonal Stability Characteristics
of a Single-Engine Airplane Model. NACA TN 1052, 19k6.

Harper, Charles W., and Wick, Bradford H.: A Comparison of the
Effects of Four-Blade Dual- and Single-Rotation Propellers on the
Stability and Control Characteristics of a High-Powered Single-
Engine Airplane. NACA ARR MF1T7, 194k,

Paulson, John W., and Bennett, Charles V.: Stebility and Control
Characteristics of s Fighter Alirplane in Inverted Flight Attitude
as Determined by Model Tests. NACA ARR L5F25a, 1945.

Sweberg, Harold H., Guryensky, Eugene R., and Lange, Roy H.:
Langley Full-Scale Tunnel Investligation of the Factors Affecting
the Directional Stability and Trim Characteristics of a Fighter-
Type Airplane. NACA ARR L5HO9, 1945,

Queljo, M. J., end Wolhart, Walter D.: Experimental Investigatlon
of the Effect-of Vertical-Taell Size and Length and of Fuselage
Shape and Length on the Static Lateral Stability Characteristics
of a Model with 45° Sweptback Wing and Taill Surfaces. NACA
TN 2168, 1950.

Johnson, Harold I.: Flight Investigation of the Effect of Various
Verticgl-Tall Modiflcations on the Directionsl Stability and
Control Characteristics of a Propeller-Driven Fighter Airplane.
NACA Rep. 973, 1950. (Formerly NACA RM L6JOT.)

Bird, John D.: Some Theoretical Low-Speed Span Loading Character~
istics of Swept Wings in Roll and Sideslip. NACA Rep. 969, 1950.
(Formerly NACA TN 1839.)



NACA TN 2409 ' T7

80.

81.

82.

83.

8l.

85.

90.

ol.

Pitkin, Marvin, and Schade, Robert O0.: Tests of a Linked Differen-
tial Flep System Designed to Minimize the Reduction in Effective
Dihedral Caused by Power. NACA ARR L5F25, 1945.

Harmon, Sidney M.: Determinastion of the Damping Moment in Yawing
for Tapered Wings with Pertial-Span Flaps. NACA ARR 3H25, 1943,

Cotter, William E,, Jr.: Summary and Anslysis of Data on Damping in
Yaw and Pitch for & Number of Alrplane Models. NACA TN 1080, 1946,

Campbell, John P., and Mathews, Ward O.: Experimental Determination
of the Yawing Moment Due to Yawing Contributed by the Wing,
Fuselage, and Vertical Tall of a Midwing Airplane Model. NACA
ARR 3F28, 1943,

Langley Stebility Research Division (Compiled by Charles J. Donlan):
An Interim Report on the Staebility and Control of Tailless Air-
plenes., NACA Rep. 796, 194Lk. (Formerly NACA ACR L4H1Q.)

Campbell, John P., and Goodmen, Alex: A Semiempirical Method fer
Estimating the Rolling Moment Due to Yawing of Airplanes.
NACA TN 1984, 1949, '

Goodman, Alex, and Fisher, Lewis R.: Investigation at Low Speeds
of the Effect of Aspect Ratio and Sweep on Rolling Stebility
Derivatives of Untapered Wings. NACA Rep. 968, 1950. (Formerly
NACA TN 1835.)

Queljo, M. J., and Jaquet, Byron M.: Calculated Effects of Geometric
Dihedral on the Low-Speed Rolling Derivatives of Swept Wings.
NACA TN 1732, 1948.

Swanson, Robert S., and Priddy, E. LaVerne: Lifting-Surface-Theory
Values of the Damping in Roll and of the Parameter Used in
Estimating Aileron Stick Forces. NACA ARR L5F23, 1945.

Goodman, Alex, and Adair, Glenn H.: Estimation of the Damping in —
Roll of Wings through the Normal Flight Range of Lift Coefficient.
NACA TN 192k, 1g9hg,

Polhamus, Edward C.: A Simple Method of Estimating the Subsonic
Lift and Damping in Roll of Sweptback Wings. NACA TN 1862, 1949.

Murray, Harry E., and Wells, Evalyn G.: Wind-Tunnel Investigstion
of the Effect of Wing-Tip Fuel Tanks on Characteristics of
Unswept Wings in Steady Roll. NACA TN 1317, 1947.



78 NACA TN 2409

92, Bennett, Charles V., and Johnson, Joseph L.: Experimental Determina-
tion of the Damping in Roll and Alleron Rolling Effectiveness of
Three Wings Having 2°, 42°, and 62° Sweepback. NACA TN 1278, 1947.

93. MacLachlan, Robert, and Letko, William: Correlation of Two Experi-
mental Methods of.Determining the Rolling Characteristics of
Unswept Wings. NACA TN 1309, 194T.

ol, Maggin, Bernard, and Bemnett, Charles V.: Low-Speed Stability and
Damping-~in~Roll.Characteristics of Some Highly Swept Wings.
NACA TN 1286, 1947.

95. Harmon, Sidney M.: Stabllity Derivatives at Supersonic Speeds of
Thin Rectangular Wings with Diagonals shead of Tip Mach Lines.
NACA Rep. 925, 1949. (Formerly NACA TN 1706.)

96. Ribner, Herbert S.: The Stability Derivatives of Low-Aspect-Ratio
Trisngular Wings at Subsonic and Supersonic Speeds. NACA TN 1k23,

1947,

97. Ribner, Herbert S., and Malvestuto, Frank S., Jr.: Stability
Derivatives of Triangular Wings at Supersonic Speeds. NACA
Rep. 908, 1948. (Formerly NACA TN 1572.)

98. Spreiter, John R.: Aerodynsmic Properties of Cruciform-Wing and
Body Combinations at Subsonic, Transonic, and Supersonic Speeds.
NACA TN 1897, 1949.

69. Malvestuto, Frank S., Jr., and Margolis, Kenneth: Theoretical
Stability Derivatives of Thin Sweptback Wings Tapered to a Polnt
wilth Sweptback or Sweptforward Tralling Edges for a Limited Range
of Suger§onic Speeds. NACA Rep. 971, 1950. (Formerly NACA
TN 1761.

100. Margolis, Kenneth: Effect of Thickness on the Lateral Force and
Yawing Moment of a Sideslipping Delta Wing at Supersonic Speeds.
NACA TN 1798, 1949.

101. Lempert, Seymour: Rolling and Yawing Moments for Swept-Back Wings
in Sideslip at Supersonic Speeds. NACA TN 2262, 1951.

102. Jones, Arthur L., and Alksne, Alberta: The Yawing Moment Due to
Sideslip of Trienguler, Trapezoldal, and Related Plesn Forms in
Supersonic Flow. NACA TN 1850, 1949.

103. Jones, Arthur L.: The Theoretical Lateral-Stability Derivatives
for Wings at Supersonic Speeds. Jour. Aero. Sci., vol. 17, no. 1,
Jen. 1950, pp. 39-46.

[



NACA TN 2409 9

104. Jones, Arthur L., Spreiter, John R., and Alksne, Alberta: The
Rolling Moment Due to Sideslip of Triangular, Trapezoidal, and
Related Plan Forms in Supersonic Flow. NACA TN 1700, 1948,

105. Harmon, Sidney M., and Martin, John C.: Theoretical Calculations
of the Lateral Force and Yawing Moment Due to Rolling at Super-
sonic Speeds for Sweptback Tapered Wings with Streamwise Tips.
Supersonic Leading Edges. NACA TN 2156, 1950.

106. Maergolis, Kenneth: Theoretical Calculations of the Lateral Force
and Yaewing Moment Due to Rolling at Supersonic Speeds for
Sweptback Tapered Wings with Streamwise Tips. Subsonic Leading
Edges. NACA TN 2122,1950.

107. Piland, Robert O.: Summary of the Theoretical Lift, Damping-in-
Roll, and Center-of-Pressure Characteristics of Various Wing
Plan Forms at Supersonic Speeds. NACA TN 1977, 1949.

108. Tucker, Warren A., and Piland, Robert O.: Estimation of the Damping
in Roll of Supersonic-Leading-Edge Wing-Body Combinations.
NACA TN 2151, 1950.

109. Hermon, Sidney M., and Jeffreys, Isgbella: Theoretical Lift and
Damping in Roll of Thin Wings with Arbitrary Sweep and Taper at
Supersonic Speeds. Supersonic Leading and Trailing Edges.

NACA TN 211k, 1950,

110. Jones, Arthur L., and Alksne, Alberta: The Damping Due to Roll
of Triangular, Treapezoidal, and Related Plen Forms in Supersonic
Flow. NACA TN 1548, 1948. '

111. Brown, Clinton E., end Adams, Mac C.: Damping in Pitch and Roll
of Triangular Wings at Supersonic Speeds. NACA Rep. 892, 1948.
(Formerly NACA TN 1566.)

112, Lomax, Harvard, and Heaslet, Max A.: Dampling-in-Roll Calculations
for Slender Swept-Back Wings and Slender Wing-Body Combinstions.
NACA TN 1950, 19L49.

113. Welker, Harold J., end Ballantyne, Mary B.: Pressure Distribution
and Damping in Steady Roll at Supersonic Mach Numbers of Flat
Swept-Back Wings with Subsonic Edges. NACA TN 2047, 1950.

114, Malvestuto, Frank S., Jr., Margolis, Kenneth, and Ribner, Herbert S.:
Theoretical Lift and Damping in Roll at Supersonic Speeds of Thin
Sweptback Tapered Wings with Streamwise Tips, Subsonic Leading
Edges, and Supersonic Tralling Edges. NACA Rep. 970, 1950.
(Formerly NACA TN 1860.)



115.

116.

117.

118.

119.

120.

NACA TN 2409

Margolis, Kenneth: Theoretical Lift and Damping in Roll of Thin
Sweptback Tapered Wings with Raked-In and Cross-Stream Wing Tips
at Supersonic Speeds. Subsonic Leading Edges. NACA TN 2048,
1950.

Goett, Harry J., and Pass, H. R.: Effect of Propeller Operation
on the Pitching Moments of Single-Engine Monoplanes. NACA
ACR, May 1941,

Milliken, William F., Jr.: Progress in Dynamic Stability and
Control Research. dJour. Aero. Sci., vol. 1%, no. 9, Sept. 1947,

pp. 493-519.

Seamans, R. C., Jr., Blasingame, B, P., and Clementson, G. C.:
The Pulse Method for the Determination of Aircraft Dynamic
Performsnce. Jour. Aero. Scil., vol. 17, no. 1, Jan. 1950,
pp. 22-38.

Greenberg, Harry: A Survey of Methods for Determining
Stability Paremeters of-an Airplane from Dynamic Flight
Measurements. NACA TN 2340, 1951.

Shinbrot, Marvin: A Least Squares Curve Fitting Method with
Applications to the Calculation of Stability Coefficients from
Transient-Response Data. NACA TN 2341, 1951.



TADLE L~ TABLE FOR CALCULATING OSCLLATORY STABLITY BOUNDAREY

Tadsl Barmaluns Ousbend Hepy = Durmators
JomjenTonlenJom o |ea | m[nofomjpaiwn]on|pefe HNY AR A
L VO N I IR I A I I O T O T I I T I I B O A 2 R I Y

-]
o
a

6042 NI VOVN

i
il

BRI

iyl B
H
FlEE|ED] 8
SEME
LIE- IRV IR
'RIRL
]
'NERERERE Ajl
]
¥ Jx [5 (4
Hrr
LR ie] §
]
RIRTARE
¥§ (8 (B
P li
BB
1Rl

THERINERE

H
)
3
I
b
L
]D

£
£
¥
¥

L]
¥ | wag | Fap Xt q

&
F
z
H

W " b ko | nb of fm

it p

-

HERSREN ST

Com-rigy
on fen | o o Lo [ ]
] -n Loom - =0 | mn
N oo
- L D |0 om0l @ Merlooti |0 o |Jooe |-bese [kenoo| o33 -.l“’ummeommuﬂ
] naoe
‘% - 08 | pous J-ooes |-oooe |avees| 0 | cos |000s | xve [ |aman | e &mm‘m#mmmm
oen
0 | oode |-oue |.oo0s |avme |-soa | ome | -ocor |Lowe |-one Laswe) e nl:nmm-m_m“m-mnw
]
N |ocwt |-sens amm |poce | fes4 | wooce |Lomem | o0 |ascat| s warze -0t | 000 hamees|. i o | ookt
ouse
24 |-t |-owee |-ccon | 4moee |-0004 | 240 | cov RIem | e ] WM | ot | s -4 |[~a7o | ~seve |-0mea [-3TR
Owpmiatism Fosesdore
l.nnhul-h:m—ﬂld—
{ometmats (1) o (1)) [ ]
¢, Drurtwisa wmlues af e bxil-aff b N EE -] M _ 1 L] [ ] - [
darimiives (wwrienta [S8) 5o (7)) by meihode
poepmted 1 Ve pixbe Gy ‘;--, FoR a..\,., L E [ T1] [ ®r ] b e LN
2, saless sl emter 1n salwm {35) Wlwts aF W i, vy
nlapephest wriahle Cug S wmy W Tage
frw Weh Use howadary is Teauived.
LA L] Y- -t L] ensm | preesy
b g e 1 e i efirtet Lk |
B Pram thape valme of Ory ., $Stwrwine the wall ".'ab' o3 ! .nnr 0y v
- e k1w o |-coss| poms | © b Yy 0 . +0 [ 200 D045 il HO00R | ~OOH
(m—%rlulﬂn‘w-ﬁw 3
the tagt, Rl ] -.-nh" 248 T -aurl;
o8 |-04m1) oces |10 ] m ~MG |2y eepnos | 3o M-u‘fnn.m-n e | uam 20m3 | o ~oAm
& ! '.—'-:-u(lo .mﬂ.-nn—m‘ F ) W 1008 T =
:m'.n“mv.u n 20 |oms| o F s | ATy mmw. wrramy .n&o e aarst|  4ume TR a00a -arro
yalme af | wnbrwiies forwl W -~ 200 2 % |-Jom
" N:A:m-:-s::-(n)mnu- n | |-ccof Bise | Ten -:.-'ﬂl -mn'imu.m-m‘; rmons | saesss |zem )y asnsae  TaMey amo| ma BT
fokinm {15 st (1) ey ame gt am=y |om
malviise of salwas wl (5] giwms Ve wilmen | 28 [-mmew|.0068 feans [Lamy|  £emn | aseva o demanei |A5NT b owmaem| eES140 [WBNTT 3 woivre| eemame woms | Lme e
& #=|‘mﬂm£rmlun-rm-
Wlity fer LW vRlvS of Cug 1 gulusmy {3#). -

8




TABIE II.- REFERENCES CONTAINING USEFUL IRFORMATION FOR ESTIMATING LATERAT, STABILITY DERIVATIVES

. Supersonic
Derivabive Subsonic (411 are theoretical estimation ethods-)
Estimation methods Related data 1 2\ %A
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Figure 1.~ The stebllity system of axes. Arrows indicate positive direc-
tions of moments, forces, and angles. This system of axes is defined
ag an orthogonal system having the origin at the center of gravity and
in which the Z-exis is in the plane of symmetry =2nd perpendicular to
the relstive wind, the X-axls is in the plane of symmetry and perpendi-
cular to the Z-axis, end the Y-axis is perpendicular to the plene of

symnetry. At a constant angle of attack, these axes are fixed in the
airplane.
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Figure 2.~ System of axes and angular relationship in flight. Arrows
indicate positive direction of angles. 1 =a - €.
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Figure 3.- Illustration of superposition of motions to determine effect
of arbitrery disturbances.
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Figure .- Lateral-stability boundaries calculated in table I. C;  was
the dependent wvariable. CnB was the independent varisble, cnﬁ was
actually varied by changing Cy, . . Varying CnB in thies manner

Biat1

caused changes in the tail contribution to all the other derivatives.
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Figure 5.- Variation of lift-curve slope with aspect ratio, taper ratio,
and sweepback for the case of subsonic incompressible flow. a, = 0.1l.
Values from reference 3k.
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Figure 6.~ Effect of horizontal~tail location on the effective aspect
ratio of the vertical tail GAetail) for the case of subsonic incom-

pressible flow., o = 0°. Teken from reference 35,



A
{eg)
rz——— 60
_-—fj"-"—
_ 50
NN SSa - %
\\ \1\\__‘ ____40
~{__| ~——-50
60
l . i
/ 2 3 4 5 6 7 8

Aspect ratio, A

Figure 7.- Variation of an /CL2 with aspect ratlo and sweep for the

cage of subsonic incompressible flow, A = 1.0; % = 0. Taken from
c
reference 25, TN ISkl
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Figure 8.~ Variation of CZB/CL with aspect ratlo, taper ratio, and

sweep for the case of subsonic incompressible flow., Based on method
of reference 25, 7MN/5§/
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Figure 1l.- Charts and formulas for estimsting CZ
Taken from reference 89. TWH /9R%

subsonic incompressible flow.
(C )cL . orf A+2
+ 2 cos
Cip = ) £ (1 + 2 sin2A > -
» = (% C1=0 (Cla)g, o O A cos®A N A+ h cos A G _
where Ji r‘i‘k J_\Z o ﬁ
- ) >
L]
(A + )-I-) cos A

(CZP>CL=O i} (CZP>CL=O,B.O=2:W (%)A + 4 cos A
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Figure 12.- Charts and formuls for estimating Cnr for the case of
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Figure 13.~ Charts and formula for estimating Czr for the case of

subsonic incompressible flow, Taken from reference 85.
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Theory (references 26,34, and 107)
s Tmm—= Fairing based on
experimenial data
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. Figure 1L.- Exemples of suggested fairing of theoretical values of 1ift-

curve slope for use in estimating values for the vertical tail in the
transonic range. . e
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